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Preface

I began thinking about political competition while reading Adam Przeworski
and John Sprague’s Paper Stones, in the early 1990s. Their book was a model of
careful analysis of the strategic behavior of socialist parties in Europe during the
first half of the twentieth century. It at once made painfully clear the inadequacy
for historical analysis of the prevalent Downsian model of political competi-
tion, in which parties are assumed to have no policy preferences, and the need
for a fully strategic model of party competition. For the Przeworski-Sprague
analysis was incomplete: the Socialists were presumed to react strategically to
bourgeois and Communist parties whose behavior was exogenously given. One
might say the drama they described was marred by incomplete character de-
velopment of several of the main actors.

I have gained from discussions of these topics with many people since
that time. In particular, I wish to thank David Austen-Smith, Jon Elster,
John Ferejohn, Stephen Holmes, Roger Howe, Eric Maskin, Klaus Nehring,
Ignacio Ortuiio-Ortin, Adam Przeworski, Herbert Scarf, Joaquim Silvestre,
and Michael Wallerstein. Many seminar participants have made comments
which have doubtless influenced the final product, although I cannot make
appropriate attributions. I especially thank Ignacio Ortufio-Ortin who has
provided a valuable critique of many, if not most, of the ideas in this book.
And I am deeply indebted to Woojin Lee and Humberto G. Llavador, who,
as research assistants, wrote much of the Mathematica code for the computa-
tions, and read a number of chapters. In addition, Lee wrote the appendix to
Chapter 11. My thanks, finally, go to Elizabeth Gilbert at Harvard University
Press, whose judicious editing has improved the present text as well as several
others I have previously authored.

I have made substantial revisions in drawing on several of my previously
published articles: “The Democratic Political Economy of Progressive Income
Taxation,” Econometrica 67, no. 1 (©1999 by the Econometric Society): 1—
19; “Why the Poor Do Not Expropriate the Rich in Democracies,” Journal

xi
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of Public Economics 70 (©1998; reprinted with permission from Elsevier Sci-
ence): 399-442; “Political Cycles,” Economics and Politics 7 (©1995 by Blackwell
Publishers): 1-20; and, both in Social Choice and Welfare, “A Theory of Pol-
icy Differentiation in Single-Issue Electoral Politics,” 11 (1994): 355-380, and
“Political-Economic Equilibrium When Parties Represent Constituents,” 14
(1997): 479-502. 1 thank the journals for permission to use these materials
here.

This book, however, was written while I was a fellow at the Russell Sage
Foundation in New York, and was revised while I taught a course based on
it at the Politics Department at New York University. | am most grateful to Eric
Wanner, Russell Sage’s president, and to that foundation’s support and kitchen
staff, for providing an ideal environment in which to cogitate and write. And I
thank George Downs, chair of the NYU Politics Department, for allowing me
to experiment with the text upon his graduate students.

I take great pleasure in dedicating this book to my wise colleague, frequent
collaborator, subtle critic, and friend, Joaquim Silvestre.

August 2000
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Introduction

The formal model of political competition almost ubiquitously employed, to
date, by students of political economy is one in which political parties play
no role. That model, introduced by Anthony Downs (1957) over forty years
ago, portrays a competition between two candidates whose sole motivation for
engaging in politics is to enjoy the power and perquisites of officeholding. Al-
though voters care about policies, the candidates do not; for them, a policy
is simply an instrument to be used, opportunistically, as an entry ticket to a
prosperous career. Political parties, however, perhaps because they are formed
by citizens’ interest groups, have, throughout the history of democracy, cared
about policies. Therefore the Downsian model cannot be viewed as a histori-
cally accurate model of party competition.

Democratic history is one of competition between parties that represent,
perhaps imperfectly, contesting interest groups among the polity. Contesting
interest groups can be represented, abstractly, as possessing different prefer-
ences regarding policies that are to be implemented by the government. A
historically accurate model should therefore represent political competition as
occurring between parties, each of which has preferences over policies and each
of which seeks, in the “game” of political competition, to propose the policy
that maximizes its preference order, or utility.

Such a model was indeed introduced by Donald Wittman (1973), but it was
not carefully developed until recently, and has only been used in applications
by a small number of researchers. The Wittman model is less user-friendly
than the Downs model, in two ways: first, more data are required to specify
the political environment with Wittman politics than with Downs politics (for
instance, one must specify the preferences of the active political parties) and,
second, the computation of equilibrium, at least in the interesting case of the
presence of uncertainty, is more complex in the Wittman model. But as Albert
Einstein said, good science consists in constructing models that are as simple
as possible, but no simpler. In this case, I contend that the Downs model is too

1



2 Introduction

simple—the price of its simplicity is the elimination of politics from political
competition.

In this book I attempt to develop, in a systematic and rigorous fashion, a
theory of competition between political parties in a democracy. Although the
Downs model is not the one of choice, I develop the Downs theory as well,
for it has played an important role in formal political theory. It is, moreover,
important to understand when the theory of competition between parties
produces political equilibria that differ from the Downs equilibrium in the
competition between opportunistic politicians, for it does not always do so.
Thus it is the case, in certain situations, that although competition occurs
between partisan parties, the result is no different than it would have been had
the competition been between policy-disinterested candidates. I shall argue,
however, that the two models only predict the same equilibrium policies in
cases that are historically unrealistic, ones in which there is no uncertainty
surrounding elections.

We begin with a model of a polity composed of citizens who possess prefer-
ences over a policy space. I assume a continuum of citizens; this is the model
of choice when we seek to understand political competition with large polities.
There are two political parties, whose preferences (or payoff functions) are first
specified sufficiently abstractly that both Downs politics and Wittman politics
are special cases. We model political equilibrium as the Nash equilibrium of the
game in which each party maximizes its payoff function over a strategy space
which is the policy space. A party’s payoff, under both the Wittman and the
Downs specifications, depends, inter alia, upon its probability of victory, given
the policies played by it and its competitor.

The book is a further articulation of this general model. In Chapters 1-8,
we study the properties of the Nash equilibria of the political game, under
eight different specifications of the model. These specifications are the eight
possibilities in the cross-product of models:

{Downs, Wittman} x {certainty, uncertainty}
x {unidimensional, multidimensional}.
“Downs/Wittman” refers to the motivation of the political actors—whether

they seek to maximize the probability of victory (Downs) or the expected
utility associated with a preference order over the policy space (Wittman).
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“Certainty/uncertainty” refers to whether parties know for certain the distri-
bution of voter types or have only a probability distribution over the possible
distributions of voter types. Parties are certain about how the vote will be
distributed between the parties, once policies have been announced, if and
only if they are certain about the distribution of voter types. “Unidimen-
sional/multidimensional” refers to the dimension of the policy space.

The classical “median voter theorem” is a description of the Nash equilibrium
in political competition in the case {Downs, certainty, unidimensional}, and
probably 95% of the formal literature in political economy since Downs has
employed this particular specification. In my view, this model is ahistorical in
all three ways: democratic politics are never Downsian, parties are never certain
about the mapping from policy pairs (proposed by the two parties) to the vote
distribution, and, I contend, (national) politics are never unidimensional.

The structure of the book is given in Figure I.1. Chapter 1 characterizes politi-
cal equilibrium in the cases {Downs, certainty, unidimensional} and {Wittman,
certainty, unidimensional}. In both cases, there is a “median voter theorem,”
but it is a different theorem in each—in particular, additional premises are
needed to prove the theorem in the Wittman context. The conclusion of both
theorems is that both parties announce the same policy at equilibrium, which
is the ideal policy of the voter whose ideal point is median in the distribution
of voter ideal points. If we believe that parties never propose the same policies
in actual democracies, then these models must be inaccurate.

It may, however, be a good approximation to say that in some elections, both
parties proposed the same policy. Chapter 1 tells us, importantly, that such an
observation is not indirect evidence for the validity of the Downs characteriza-
tion of politics, for Wittman politics will produce the same result. In a world of
certainty, Downs and Wittman politics are observationally equivalent (unless
we can somehow observe party motivations).

Chapter 2 introduces party uncertainty about voter behavior. There are, in-
deed, a variety of methods for modeling this kind of uncertainty, and three are
described in this chapter. All three approaches to uncertainty deliver aggregate
uncertainty, despite the fact that there is a continuum of voters. Thus it will
not do to assume that each voter behaves stochastically and that the random
variables that describe the behavior of individual voters are independently dis-
tributed, for in that case, uncertainty at the aggregate level would disappear.
Even though we have a continuum of voters, parties do not know for sure the
mapping from pairs of policies to the vote distribution.
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Introduction 5

Let 7 (¢!, t?) be the probability that party 1 defeats party 2 at the policy pair
(t', t?). The three approaches to uncertainty offered here each provide mi-
crofoundations (to varying extents) which allow us to compute the function
7. That function is not a datum of our problem, but is deduced from more
primitive assumptions. This philosophically desirable approach renders our
analysis somewhat difficult at times, because it is often the case that the com-
puted function 7 is rather badly behaved, even when the underlying primitives
are unexotic. For instance, 7 is typically not everywhere continuous, nor ev-
erywhere differentiable where it is continuous; nor does 7 standardly possess
the kind of convexity properties that are useful in equilibrium theory.

Armed with these several approaches to uncertainty, Chapter 3 studies the
cases {Downs, uncertainty, unidimensional} and {Wittman, uncertainty, uni-
dimensional}. Now the Downs and Wittman formulations do generate equilib-
ria which are different: while the Downs model continues to predict that both
parties propose the same policy in equilibrium, the Wittman model predicts
that equilibrium policies will be differentiated.

Thus of the four model types we have studied in the unidimensional case—
{Downs, certainty}, {Wittman, certainty}, {Downs, uncertainty}, {Wittman,
uncertainty}—only the last one generates the realistic outcome that parties
offer different policies in equilibrium. We can conclude that both the Downs
assumption and the certainty assumption are poor ones, if we believe that in
reality policies are differentiated in elections.

Although a theorem proving the existence of political equilibrium in the
{Wittman, uncertainty, unidimensional} case is presented in Chapter 3, it is
not fully satisfactory or general, for its premises are complex in the sense of
not being stated in terms of the primitive data of the model. Here the unpleas-
ant behavior of the function 7 comes home to roost. It is nevertheless the case
that in many applications of the model, these equilibria exist and can be calcu-
lated, even if we do not have a fully general theorem asserting the existence of
equilibrium. Chapter 4 offers four applications of the {Wittman, uncertainty,
unidimensional} model and computes equilibria. These applications are of-
fered for two reasons: first, to show that the model is indeed tractable, and can
be used as a tool in political economy and, second, for the particular substantive
results deduced.

Until now we have taken the preferences of parties as given, much as the
Arrow-Debreu model takes the technologies of firms as given. In Chapter
5 we relax this assumption and propose two models in which the parties’
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preferences, in the Wittman model, are endogenously derived from the prefer-
ences of the citizens. Our conception is one of “perfectly representative democ-
racy,” an ideal type that is not realistic when parties are financed by private
contributions, as they are in the United States; nevertheless, there is value in
comparing what these models predict with what we observe.

Thus we propose notions of “equilibrium in the process of party formation”;
one of these we dub “Condorcet-Nash equilibrium.” With these models we
have a relatively complete theory of political economy, one which derives po-
litical equilibrium beginning only with knowledge of the distribution of voter
preferences. (Of course, the classical Downs model does that as well, but we
are dissatisfied with it as a model of politics.) The section on Condorcet-Nash
equilibrium can therefore be viewed as the first oasis in our trek across this
landscape. As an application, we show how at least one important claim about
the relationship between taxation and income distribution, which is true when
politics are Downsian, is not true in this setting of endogenous Wittmanesque
parties. This provides another reason to reject the Downs model of politics.
We also calculate the Condorcet-Nash equilibrium for a Euclidean model, and
demonstrate an interesting relationship between the preferences of parties and
the voters who support them.

Chapter 5 concludes the unidimensional analysis. In Chapter 6 we study
the models {Downs, certainty, multidimensional} and {Wittman, certainty,
multidimensional}. The story in these cases is that, except under singular speci-
fications of the data, political equilibria do not exist. In the Downs case, this fact
is well known, and is essentially equivalent to the nonexistence of Condorcet
winners (when the policy space is multidimensional). Altering the specifica-
tion of party payoff functions from Downs to Wittman does not enable us to
escape the failure of the model in offering a prediction of political equilibrium
in the multidimensional context.

Chapter 7 studies the {Downs, uncertainty, multidimensional} model. Sev-
eral authors (Coughlin 1992; Lindbeck and Weibull 1987) have shown that
political equilibria exist in models of this type. We present their results. Their
models assume, however, a finite polity, and the uncertainty that exists in the
environments they postulate disappears when the polity approaches the con-
tinuum. Nevertheless we are able to use the finite-type model (introduced in
Chapter 2) to show that equilibria continue to exist in a model with a contin-
uum of voters. As before, in Downs equilibrium, both parties offer the same
policy.
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Although we have shown that equilibrium can exist in the {Downs, uncer-
tainty, multidimensional} case, it is a fragile existence: equilibrium does not
exist in this case if we model uncertainty in the other two ways described in
Chapter 2.

The fact that equilibrium does not exist in the models of Chapter 6, and exists
only fragilely in the environment of Chapter 7, has induced many researchers
to depart from equilibrium analysis and study “cycling.” Cycling behavior is
what presumably occurs in a real-world game with no Nash equilibrium: party
1 plays ¢, party 2 plays a best response to ¢, party 1 plays a best response to what
party 2 played, and so on. If a Nash equilibrium does not exist, this process will
never converge; it continues ad infinitum.

We take, however, a different point of view—that when a model has no
equilibrium, it is probably a misspecification of the real-world phenomenon it
is meant to portray. In Chapter 8, which is, in a dramatic sense, the center of
our story, we offer a way of thinking of multidimensional political competition
under uncertainty in which Nash equilibria do exist.

That conception marries the Downs and Wittman approaches. It conceives of
a party as consisting of three factions—militants, opportunists, and reformists.
The opportunists are the dramatis personae of the Downs model—they desire
only to maximize the probability of the party’s victory. The reformists are the
actors in the Wittman model—they desire to maximize the expected utility
associated with the party’s preference order over policies. The militants are
new characters: they desire to propose a policy as close as possible to the
party’s ideal point, and have little or no interest in winning the election at
hand. T argue that political histories are replete with descriptions of these
three kinds of party activist—for instance, Schorske ([1955] 1993) calls them,
when describing the German Social Democratic Party, the party bureaucrats,
the trade union leadership, and the radicals. To paraphrase, in a word, the
opportunists, reformists, and militants are interested, respectively, in winning,
policy, and publicity.

Each party is now postulated to be a coalition of these three factions. We
propose that the party’s preference order over policy pairs is the intersection
of the preference orders of its three factions. Political equilibrium—christened
“party-unanimity Nash equilibrium” (PUNE)—is now defined as a Nash equi-
librium where each party is equipped with the preferences just described. In
words, this means that, at a policy pair (¢, t?), party 1 will deviate from ¢! to
a policy t* only if all three of its factions (weakly) prefer (t*, t2) to (¢!, t*). We
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show that we should expect a (two-dimensional) continuum of such equilibria
to exist in multidimensional party competition.

Once armed with the PUNE concept, we are also able to resolve the question
of existence of equilibrium in the {Wittman, uncertainty, multidimensional}
model—an issue that, until now, has remained open.

The existence of a continuum of equilibria in the {multifaction, uncertainty,
multidimensional} model means that the model is underdetermined—if we
believe that real political equilibria are locally unique. I argue, in Chapter 8, that
the multiplicity of equilibria is the price we pay for not specifying a particular
bargaining game among the factions of a party. There are, however, reasons
not to specify such a game. Perhaps the main one is that bargaining among
factions requires compromises, and compromises are easiest to motivate in
a multiperiod game—for example, the militants will compromise today in
return for a promise that the reformists will compromise in the next election.
Bargaining among factions, in any case, is only coherent in a more complex
model, one played over many periods, or one complexified in some other way.!

It turns out, nevertheless, that in many applications, the cost we pay for not
refining the equilibrium set is small, either because the PUNEs turn out to be
quite locally concentrated in the policy space, and so the model gives us quite
good predictions of the characteristics of equilibrium, or because we are able to
establish characterizations of the entire equilibrium set. Chapters 9—12 present
asequence of applications of the {multifaction, uncertainty, multidimensional}
model.

Chapter 9 considers the problem of multidimensional taxation. The ques-
tion why income taxation is progressive in almost all democracies has never
received a fully satisfactory answer in the political economy literature, because
a specification of a multidimensional political contest in which equilibria ex-
ist has been lacking. We assume that the set of admissible income tax policies
consists of quadratic functions of income, with certain properties (for exam-
ple, monotonicity of after-tax income in pretax income). The policy space is
two-dimensional, after taking account of a budget-balancing constraint. There
are two political parties, one representing relatively rich citizens, the other rela-
tively poor citizens. The polity is one in which median income is less than mean
income (as in all actual democracies). We show that in all PUNE:s of the game

1. Another way of modeling compromise among factions without an intertemporal story would
be to allow transfers of some good among factions: we’ll assent to your proposal if you pay us.
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where parties compete by announcing tax policies, a progressive tax policy wins
with probability one. This application demonstrates that even though we have
a continuum of equilibria, we can say something interesting about all of them.

Chapter 10 attacks a venerable question in political economy, one of concern
since the foundation of democracy. In a democracy, why do the poor not
expropriate the rich through the tax system? Various answers have been offered;
this chapter proposes a new formulation of an old answer that depends upon
the multidimensionality of the policy space. That old answer is that the voters—
in particular, the poor—care about other things as well as income, for example,
religion. If the conservative party is religious and the labor or socialist party is
not, a section of the poor will vote for the conservatives, despite its conservative
policy on income redistribution.? This chapter proposes a polity in which each
citizen type has a preference order over income and the religious position of the
government; the polity is characterized as a distribution of these types. We ask:
Is there a condition on the distribution of types under which it will be the case
that, if religion is sufficiently salient, all PUNEs will involve both left and right
political parties’ proposing low tax rates? We indeed discover such a condition.
Here is, again, an application in which the infinite multiplicity of PUNEs turns
out not to sabotage the possibility of analysis. We go on to show, empirically,
that if the “religious” issue is read as the race issue in the United States, then the
condition in question holds for the U.S. polity. Thus to the extent that race is a
salient issue for U.S. voters, we should expect neither political party to propose
highly redistributive policies.

This result shows that multidimensional politics can be, at first glance, coun-
terintuitive or, as some would say, paradoxical. We show, in Chapter 10, that
if religion is sufficiently salient for voters, both parties will propose a zero tax
rate, in all PUNEs, even though a majority of the population has an ideal tax
rate of unity! The source of the paradox is that policies are voted on not inde-
pendently, but as a package, under party competition. (This is in contrast to
the referendum process, where, presumably, each dimension of policy can be
voted on independently.)

In Chapter 11 we apply the PUNE concept to another historical question: why
did socialists win in some countries, and fascists in others, in interwar Europe?

2. This is not quite the same thing as Marx’s view that “religion is the opium of the people.”
For Marx, religion kept the masses from rebelling; here religion may deter many workers from
voting for the party that champions their economic interests.
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The chapter is inspired by the rich analysis of this question by Luebbert (1991).
Although Luebbert’s analysis is complex, a rather simple story is its dominating
feature. That story is one of multiclass, competitive politics. Luebbert models
countries as consisting of four classes: the urban workers (W), the urban
middle class (M), the rural landed peasantry (P), and the agricultural laborers
(A). (Of course urban and rural upper classes existed too, but were too few in
number to matter in terms of voting.) The key to political victory (whether
by election or through some other form of popular support) was to forge
an alliance either between the workers and landed peasants or between the
middle class and the landed peasants. Presumably the Left would win if the
former alliance were cemented, and the Right would win if the latter alliance
were cemented. Luebbert goes on to argue that the Left succeeded in forging
the worker-peasant alliance only in countries in which peasant—agricultural
worker class struggle was quiescent. The three European countries where that
struggle was active were Germany, Italy, and Spain, which all became fascist.

We design a model to test Luebbert’s conjecture, which becomes a formu-
lation about the probability of victory by the Left in an electoral competition
between Left and Right, where rural class struggle is either quiescent or ac-
tive. The “Luebbert conjecture” is that this probability should be significantly
larger when rural class struggle is quiescent. The policy space in this model is
four-dimensional. We deduce strong but not ironclad support of the Luebbert
conjecture.

Chapter 12 presents a rather schematic, three-class model of U.S. politics,
whose purpose is to study the question: why are the interests of large capital
represented in both the Democratic and the Republican parties? (We presume
this to be the case, without argument.) The economy consists of three types
of individuals: capitalists, who own a large firm and hire labor; workers, who
sell their labor power to the large firm; and the petite bourgeoisie, who work
in their own shops and hire no labor. It is supposed that the large firm uses
government-provided infrastructure an an input, besides capital and labor,
while the petit bourgeois shops use only the labor of their owners. The political
problem is to determine a uniform tax rate on the income of all three classes,
and to divide tax revenues between a lump-sum transfer to all citizens and
spending on infrastructure. This is a two-dimensional policy space, after taking
account of the government’s budget constraint.

We presume that the petite bourgeoisie and large capital are both represented
in the Republican Party. (This party turns out to have five factions.) We study
two alternative membership scenarios for the Democratic Party: either it rep-
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resents only workers (Scenario One), or it is a coalition of workers and large
capital (Scenario Two). These alternatives are easily captured with the machin-
ery of factions. We show that capitalists do better in the political equilibria
(PUNE) of Scenario Two than in those of Scenario One, which provides an
explanation of the presence of both large capital and labor in the Democratic
Party. Why does large capital not join the British Labour Party and the Scan-
dinavian social democratic parties? Perhaps it has. If not, this analysis would
suggest that entry of the capitalist class into those parties is forbidden.

Chapter 13 revisits the problem of (endogenous) party formation , but now
in the multidimensional context. We begin with a distribution of types and
assume that two parties will form. We compute what the preferences of those
parties will be under the assumption of a perfectly representative democracy
that was introduced in Chapter 5. We develop two applications. First, we
estimate the distribution of U.S. voter preferences on the two issues of taxation
and race, using data from the National Election Survey, and then compute the
endogenous parties that would form in a perfectly representative democracy.
Second, we take the model of Chapter 9, in which the set of policies is quadratic
income taxes, and compute what parties should arise, given the distribution
of income in the United States and assuming that all voters are interested in
maximizing their after-tax income. We show, in both of these examples, that
the parties are quite polarized in their preferences and that policies in political
equilibrium are quite far apart. We end the main body of this chapter with a
short section that contemplates the nature of party formation in an imperfectly
representative democracy, where the preferences of parties are determined by
their financial contributors. A reprise takes up, once again, the issue of why the
poor don’t expropriate the rich in democracies, and summarizes what we have
learned.

Chapter 13 presents our most complete theory of political economy, for
parties emerge endogenously from political competition, given only the dis-
tribution of preferences and endowments of the citizenry. As such, the chapter
competes with the median-voter model, which also claims to explain political
outcomes given only those same primitives.

Chapter 14 begins an exploration of the theory of three-party competition.
It is assumed that, if no party wins a majority of the vote, then a majority
coalition, consisting of two parties, must form. We now introduce two kinds
of voter—sincere and strategic—and model political equilibrium as a Nash
equilibrium of a game that takes place at three dates: first, when parties an-
nounce policies; second, when citizens vote (perhaps after a series of opinion
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polls); and third, when a coalition government forms and announces a policy.
The main purpose of the chapter is to show that, under the supposition of un-
certainty about voter behavior, the main concepts introduced in the two-party
model generalize to the three-party case—that is, with a unidimensional policy
space, a generalized Wittman equilibrium exists, and with a multidimensional
policy space, a generalized PUNE exists. As in the two-party case, the policies
of parties are differentiated at these equilibria.

Throughout this book there is an emphasis on the computation of political
equilibrium. We wish to show the reader that the models we study can be fit
to data, and can be useful tools of analysis in empirical work—in particular,
the PUNE concept liberates formal political economy from the handicap of
having to conceive of politics as unidimensional. Although the computation of
multidimensional political equilibria is more complex than finding the ideal
policy of the median voter, it can be mastered by studying the examples we
present. We have used Mathematica to compute equilibria, but of course other
programs can be used as well. We strongly recommend that the student learn
to compute. Our tools can be used to unearth concrete answers to problems
involving political competition, but mastering computation is essential to that
end.

The mathematics employed in this book is almost all covered in a course
in linear algebra and an advanced calculus course. Concepts or theorems in-
voked that do not fit that characterization, such as Farkas’ lemma and other
terminology of elementary convex analysis, and the basic elements of proba-
bility theory, are briefly presented in the Mathematical Appendix. As is often
said, a certain level of mathematical sophistication is desirable, for which an
advanced calculus course is a proxy. Any student who has completed the first-
year Ph.D. course in microeconomic theory will be adequately prepared, but
that preparation is probably not necessary. Some significant exposure to eco-
nomic modeling is, however, surely necessary. A number of examples assume
a familiarity with the concept of general economic equilibrium, but those ex-
amples are fairly simple. The game theory used in the book is elementary: the
only equilibrium concept used is Nash equilibrium. Nevertheless, the reader
will develop a good understanding of the equilibrium approach if she or he
masters the text.
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Political Competition over a Single Issue:
The Case of Certainty

1.1 Citizens, Voters, and Parties

We begin with a classical example in political economy, to illustrate the basic
components from the theory of rational individual decision making that our
theory must include. There is a population of voters, in an economy with
two goods: a private good, to be thought of as an amalgam of consumption
commodities and measured in dollars, and a public good, provided by the state
and financed through taxation. All voters have the same preferences over these
two goods, represented by a direct utility function

ulx, G) =x+ 2aG1/2,

where x is the individual’s consumption level of the private good and G is the
level of the public good provided to all. Voters are differentiated by their wage-
earning capacity; a voter with a wage of /i earns enough to purchase / units
of the private good in, say, a year. Suppose that h is distributed among voters
according to a probability measure F, whose mean is u. The public good is
measured in units of the private good that are needed to produce it per capita:
thus if T dollars per capita are raised in tax revenue, then T units of the public
good can be produced.

The policy that voters must choose is a proportional income tax rate to fund
the public good. We stipulate that the policy space is the interval [0, 1], which
is to say the tax rate must be at least zero and no larger than one. If the tax rate
is t, then taxes raised will be in the amount #u per capita, since

/th dF(h) =tu.

13
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(This formula embeds an assumption that voter-workers do not alter their
labor supply depending upon what the tax rate is.) At tax rate ¢, the voter of
“type h” will consume (1 — ¢)h units of the private good (her after-tax income)
and fu units of the public good. We now define the voter b’s indirect utility
function over policies, which is

(1.1) v(t,h) = (1 — Hh + 2a(tp)%

v measures the utility of type h as a function of the tax rate.

Notice that voters of different types (where type is k) have different prefer-
ences over policies. The ideal policy of voter h is the value of t which maximizes
his utility. Since v is concave in ¢, we may find this point by setting dv/dt equal
to zero, which gives

2
N L
(1.2) t _mm[ﬁ,l],

where we denote by #" the ideal policy of h. (We must use the “min” operator,
since when a?uu/h? is greater than one [for small k], the best feasible policy
for h is to set the tax rate at unity.) It follows from the above expression that
high-wage voters want low tax rates, and low-wage voters want high tax rates.

The political problem that will occupy us henceforth is how tax policy (more
generally, any policy that is determined politically) is determined through
political competition and, in particular, through competitive elections.

We may generalize from the example. We postulate a set of types H, where
the generic citizen is denoted by h € H. A citizen’s type may be thought of as
a vector of traits, which characterizes her preferences and endowments. All
citizens are eligible to vote. We will always assume that H is a subset of some
real space—for example, R, R?, and so on. If, for instance, H C R?, then each
citizen is relevantly characterized by two traits, perhaps her income and her
religion. The population of citizens is characterized by a probability measure
Fon H. Thusif S is a (measurable) subset of H, then F(S) is the fraction of the
population who have traits h € S. F could be a probability distribution with
finite or infinite support. In the former case, we speak of a finite-type polity.
In most of this book we will work with distributions where the support is a
continuum, for this will allow us to use the calculus. The infinite-type model
is the appropriate one to capture the idea that each citizen has negligible effect
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on the political outcome, and that there are a very large number of vectors of
types in the population.

The set of voters will be some subset of the set of citizens; in this chapter we
assume that every citizen votes. There is a space of policies, T. T is a subset of
some real space. In this chapter, we study the case where T is a real interval;
this is the case of a unidimensional policy (or issue) space. When T CR", n > 1,
we say the policy space is multidimensional.

Every citizen has a preference order over policies, represented by a utility
function v : T — R. We denote the utility function of a citizen of type h as
v(-, h). When faced with two policies to choose from, a voter votes for the one
he prefers. If he is indifferent, he votes for each policy with probability one-half.

There are two political parties, here denoted 1 and 2. Party i has a payoff
function TT', which gives a payoff or utility for the party as a function of the
pair of policies announced by both parties, (¢!, t?). Thus

(1.3) Mm:TxT—R, i=12.

The payoff functions are, at this point, taken to be primitives, but we will,
in this chapter, study two special cases where the payoff functions are derived
from prior assumptions.

Definition 1.1 A political equilibrium is a Nash equilibrium in the game played
by the two parties, where the payoff functions are I1%,i=1,2,and T is their
common strategy space.

That is, a political equilibrium is a policy pair (t'", t**) such that
vieT TI'¢Y, %) >1'¢ )
vieT IV, %) = I, 0).

All political equilibria in this book are special cases of this general definition.
Thus we use the most basic concept in game theory as our concept of political
equilibrium.

In this chapter we assume not only that all citizens vote in elections, but
that both parties know the distribution F of types and the utility function v.
There is nevertheless some uncertainty as to the electoral outcome, due to the
possibility of a tie. We assume that in this case a fair coin is flipped, so that each
party wins with probability one-half.
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Let Q(t!, t?) C H be the set of types who prefer ¢! to t2, and let I (¢!, t?) be the
set of types who are indifferent between ¢! and 2. (The set of types who prefer
t? to t! is the complement of Q (¢!, t?) U (I(t', t?) in H.) Then the fraction of
voters who vote for t!, when facing the choice between ¢! and #?, is

(14)  p, ) =FQ@', ) + 5 -FUE, ).

This fraction is either more than, equal to, or less than one-half. In the first

case, party 1 wins the election, in the third case it loses, and in the case where

o= %, each party wins with probability one-half. Summarizing, we denote by

7 (¢!, t?) the probability that party 1 wins the election. We have:

if p(t!, %) >
if p(t', %) =
if p(t!, %) <

(1.5) 7t 1)) =

S =
= D= D=

We call this case—where voters are perfectly rational and parties know every-
thing about them—the case of certainty. Empirically this case never occurs, but
it is the obvious benchmark at which to begin our analysis.

1.2 The Downs Model

Anthony Downs (1957) applied the model of spatial equilibrium of Hotelling
(1929) to the case of political competition. His model, succinctly stated, is the
special case of political equilibrium (section 1.1) in which

', 5 = n (¢4, ).
(1.6)
M2t %) =1 — w(th, 2.

Thus each party desires to maximize its probability of victory. A political
equilibrium of this model will be called a Downs political equilibrium.

1. Formula (1.4) assumes that there is a continuum of traits, and that F is absolutely continuous
with respect to Lebesgue measure. Thus if F(I) > 0, there is a continuum of agents who are
indifferent between t! and #2, and if each flips a coin to decide how to vote, exactly one-half
of them will vote for each policy. This justifies the formula.
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In this model, the parties’ payoff functions are not derived from preferences
over policies. Parties are neither left nor right, secular nor confessional. A
party’s goal is solely to win office.

There are two interpretations of this model. The first is that of a competition
between candidates, not parties, who desire to win the election solely because
of the perks of office. If those candidates are chosen by parties, which do have
policy preferences, the parties are unable to influence the candidates to act
as their agents in respecting those preferences. Under this interpretation, the
candidate is a completely unaccountable agent of his or her party. The second
interpretation is that the parties themselves desire only to win office. They may
do so either for venal reasons (the perks of office) or because, once holding
office, a party can implement the policies of its choice. But if the latter were the
case, then voters would be choosing between parties which would implement
policies different from the ones announced—and this is not the Downsian
assumption. In Downs’s model, voters vote for the policy they prefer between
the two announced: the assumption of voter rationality implies voters expect
the announced policy to be implemented.

Because actual political parties are always partisan—in the sense of possess-
ing preferences over policies—the Downs model does not appear to capture
actual political history. Nevertheless the model has been extremely influential,
in spite of its lack of realism, because it provides a clean, simple prediction
about the nature of political equilibrium, to which we now turn.

Definition 1.2 A Condorcet winner is a policy t* € T which defeats or ties all
other policies in pairwise elections. In the case of this chapter, we may write:

YieT #w(tht)>

1
3

A strict Condorcet winner is a policy t* which defeats all other policies in
pairwise elections. In this chapter, we may write:

Vi£t* w(t ) =1.
Now observe:

Lemma 1.1 Let t* be a strict Condorcet winner. Then (t*, t*) is the unique
Downs political equilibrium.
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Proof:

1. Existence. (t*, t*) is clearly a political equilibrium, for IT! (¢*, t*) = 7 (t*, t*)
= %, and TT2(¢t*, t¥) = % as well, and if either party deviates, its probability of
victory falls to zero.

2. Uniqueness. Suppose (t'", t2*) were a Downs equilibrium where " 2 t*
t*". Both parties cannot win for sure at (t'", £2"). Suppose 7 (t'", t2*) < 1. Then
party 1 should deviate to t*, for 7 (¢*, 2y =1.

Now suppose t'" = t*and £ % t*. Then [T2(t!", t*") = 0 but IT2(¢"", *) =
%. So party 2 should deviate. =

We leave as an exercise for the reader what political equilibria look like when
there are several Condorcet winners.

Definition 1.3 A function v: T — R is single-peaked iff it possesses a unique
local maximum on T.

Remark An alternative, and indeed preferable, definition is:

Definition 1.3* A function v: T — R is single-peaked iff it is strictly quasi-
concave? on T.

Suppose T is not compact—say T = R. The function graphed in Figure 1.1
has a unique local maximum on T, but it is not quasi-concave. We want to elim-
inate functions like this one from the family of “single-peaked” functions—
hence the superiority of Definition 1.3*. If T is compact and v is continuous,
then the two definitions are equivalent. Since the term “single peaked” clearly
suggests the formulation of Definition 1.3, it is actually a misnomer.

If T is compact, and if v(-, h) is continuous, then it has a maximum on T. If
v(-, h) is also single-peaked, this is its unique local maximum.

We now formally assume:

Al (¢, h) is continuous in its arguments.
A2 wv(-, h) is single-peaked (in ¢) for all h € H.

2. Concepts like quasi-concavity, with which the reader may not be familiar, will generally be
defined in the Mathematical Appendix.
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Figure 1.1 A non-quasi-concave function with a unique local maximum

A3 If t! #£ t2, the set of types indifferent between ¢! and t* has F-measure
zero.
A4 Fis equivalent to Lebesgue measure,® A.

The key property of single-peaked functions which we employ is stated in:

Lemmal.2 Ifv:T — Riscontinuous and single-peaked on T and if v achieves
its maximum at t, then v is monotone decreasing for all t > t and v is monotone
increasing for all t < 1.

Proof:

We prove the first statement. Suppose, to the contrary, there are points ¢’
and t” suchthatf <t < ", and v(t") > v(t)). Letk = v(t') + %(v(t”) —v(t)).
Then v(t") > k and v(f) > v(t") > k, so f and ¢” both lie in v’s upper contour
set at value k. However, v(t') < k, and t’ lies between # and t”"—this contradicts
that fact that v is quasi-concave.

The second claim is proved in like manner. =

3. See the Mathematical Appendix for the definition of the equivalence of two measures. If H
is unidimensional, and F is the (cumulative) distribution function of F, then A4 is equivalent to
F’s being continuous and strictly increasing.
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Definition 1.4 An ideal policy of citizen h is a policy " such that Vt e
T, v(t", h) > v(t, h). An ideal policy #" is a best policy for h.

We next define a function ¥ : T — [0, 1]. Let H be the set of citizens in H
whose ideal policy is less than ¢. Define

(1.7) W (t) = F(HY.

W (t) is the fraction of the population whose ideal policies are less than ¢.
Note that W is an increasing function, since t' > t = H' > H".

Lemma 1.3 Suppose Al, A2, and A3. If W is continuous and strictly increasing
then there is a policy t* that is a strict Condorcet winner. In fact, W (t*) = %

Proof:

1. Since W is continuous and strictly increasing, there is a unique t* such that
(") = % We shall show that ¢* is a strict Condorcet winner.

2. Lett < ¢*. Since W (¢*) = %, exactly one-half the citizenry have ideal points
greater than or equal to t*. All these prefer t* to ¢, by Lemma 1.2. It remains to
show that more than one-half prefer t* to t. Suppose to the contrary that this
were false: then one-half the population either prefer ¢ to t* or are indifferent
between t and t*. By A3, those who are indifferent make up a null set, so exactly
one-half the citizenry must prefer ¢ to t*. That is, F(Q2 (¢, t¥)) = %

3. Let h* be any type whose ideal point is £*: by single-peakedness, v(¢*, h*) —
v(t, h*) > 0. By continuity of v in k, there is an open ball, B, about h* in H,
such that

heB=v(t" h) —v(t,h) > 0.

4. Since F(Q2(¢, %)) = %, Q(t, t*) contains types whose ideal points are arbi-
trarily close to t*. So we may choose a sequence {/'} of types in (¢, t*) whose
ideal points converge to t*; by continuity, the limit of this sequence, call it h*,
has ideal point #*.

5. But this contradicts step 3, which shows that an open ball Babout #* can be
constructed which excludes all pointsin Q (¢, t*). It follows that the supposition
in step 2 is false, and so a majority of types prefer * to t.
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6. A similar argument shows that if f > t*, a majority of types prefer t* to f.
Thus it is established that t* is a strict Condorcet winner. ®

Theorem 1.1 Suppose Al, A2, and A3 hold. Let T C R. Then there exists a
political equilibrium in the Downs game. Moreover, if W is continuous and strictly
increasing on T, then the equilibrium is unique, and consists in both parties
playing the same policy, the median ideal policy.

Proof:
1. T is an interval, which we denote T = [, ].

2. We prove the first claim first. There are two cases.

Case (i) There is a policy t* such that W(t*) = % In this case (t*, t*)
is a political equilibrium. To see this, we must check whether either party
can profitably deviate. Each party wins with probability one-half at (¢*, t*).
Suppose party 1 deviates to t > t*. We know that one-half the population have
ideal policies less than t*: by Lemma 1.2, all those people prefer t* to t. To fix
this important observation in the mind, see Figure 1.2. Consequently party 1
now wins with probability at most one-half, so the deviation is not profitable.
Now suppose t < t*. The set of citizens with ideal policy greater or equal to #*
makes up at least one-half the population, and these citizens all prefer * to ¢, by
Lemma 1.2: consequently party 1 now wins with probability at most one-half.
Hence this deviation is not profitable.

The same argument applies to possible deviations by party 2. Hence (¢*, t*)
is a political equilibrium.

Case (ii) There is no policy t such that W(r) = % Suppose the set
{t|¥(@) > %} is nonempty. Then, let t* = inf{r | W (¢) > %}. Then (t*, t*) isa
political equilibrium. We must check the possible deviations. Suppose party 1
deviates to ¢ > t*. We know that at least half the population prefer t* to ¢, be-
cause for any small € > 0, W (t* +€) > %, and so this deviation is unprofitable.
Now suppose ¢ < t*. All the citizens who prefer ¢ to t* have ideal point less
than t*. But since t' < t* implies ¥ (¢') < %, less than half the citizenry prefer ¢
to t*. By A3, more than half the citizenry prefer * to ¢, so t is an unprofitable
deviation.

3. On the other hand, suppose {t | ¥ (¥) > %} = @. Then (%, t) is a Downs
equilibrium. Since H(7) < % by hypothesis, more than half the polity prefer ¢
to any other policy. This concludes the proof of the first statement.
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Figure 1.2 All citizens with ideal policies " > * prefer t* to any t < t*

4. Now suppose that W is continuous and strictly increasing on T It follows
by Lemma 1.3 that the median ideal policy, t*, is a strict Condorcet winner. It
follows by Lemma 1.1 that t* is the unique Downs equilibrium. =

In the case where W is continuous and increasing, the policy t* (where
V(%) = %) is the median ideal policy in the sense that one-half the voters have
ideal policies less than or equal to t* and one-half have ideal policies greater
than or equal to t*. There is no sense, however, in which the voters who have ¢t*
as their ideal policies are median in the type space H. For note that Theorem 1.1
doesnotassume H C R.If H lies in a higher dimensional space, then its median
is not well defined. Hence the so-called median voter theorem, in which #* is
the ideal policy of a voter with the median trait, is a special case of Theorem 1.1.
Let us illustrate this point with some examples.

Example 1.1 We continue the analysis of the introductory example. Citizens
are endowed with (scalar) incomes h € H. The distribution of income is given
by F on H. We assume A4. All citizens have identical preferences over income, x,
and a public good, G. Their preferences are represented by the utility function
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(1.8) u(x, G) =x+ 20[\/6,

where @ > 0, and « is the same for all individuals. If #* > a®u for all types,
then, from (1.2) we have, for all h:

2
(1.9) th=p <ﬁ> i
h

Note that 7" is a strictly decreasing, continuous function of h. Hence W is
continuous and strictly increasing. Check that there is a unique type who is
indifferent between any pair of distinct policies. Theorem 1.1 tells us that the
unique Downs political equilibrium is (¢*, t*) where W (¢*) = % But the set
of citizens whose ideal tax rate is t* or less, because it consists of one-half the
population, is exactly the set of citizens whose endowment is greater than or
equal to m, where m is the median income of the population.

Let F be the cumulative distribution function (CDF) of the probability mea-
sure F. Then m is defined by the equation

F(m) = 3.

Having solved for m, we immediately get t* via (1.9).
In this example, we see that the Condorcet winner ¢* is associated with the
“median voter.”

Example 1.2 Just as in the first example, we assume utility is given by (1.8),
except we now suppose that « varies in the population. & remains a citizen’s
income. Now a citizen is characterized by the pair of traits (h, «). Let B be the
domain of types (h, o) and let G be the probability measure on B characterizing
the distribution of types. We assume that G is absolutely continuous with
respect to Lebesgue measure on B.

Just as before, we have

v(t, o, h) = (1 — )h + 2a(tp)'/?

andso " = (%)2 Assume that « takes on values in an interval [&, @] and h
takes on values in an interval [4, E]. Then W is a continuous, strictly increasing
function (by the absolute continuity of G with respect to Lebesgue measure),
and so Theorem 1.1 tells us there is a unique Downs political equilibrium,
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(t/u)1/2

Figure 1.3 The set of types in Example 1.2 with ideal tax rate less than ¢

(t*, t*). Let B’ be all citizens whose ideal tax rate is less than or equal to .
There is a unique ¢* defined by

G(B") =1

Let us solve for t*. The set of all citizens whose ideal tax rate is less than  is, by

(1.9),
o £\ 2

This is the set of all citizens whose trait pair (h, o) lies below a line through the
origin in the (h, «) plane with slope (¢/u)'/?: see Figure 1.3. The Condorcet
winner ¢* is that tax rate at which this half-plane has G-measure one-half. If
we specified G, we could compute t*.

In this example, the set of voters with ideal tax rate t* is the line o =
h(t*/u)'/?. Granted, this line separates the type space into two equal masses,
but there is no well-defined median voter.

Example 1.3 We now have a one-dimensional type space again, where h € H
is income. In this example, taxes do not fund a public good: rather tax revenues
(from proportional taxation) are redistributed equally on a per capita basis. Let
F have mean p and median m < w. (Thus, as is always true in actual societies,
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median income is less than mean income.) An individual’s utility is given by
her after-tax income. We have

(1.10)  v(t, h)=1 —t)h + tpu.

The per capita tax revenue is f /4 at tax rate ¢. This time, we must be more careful
in computing ideal tax rates. We have dv/dt = —h + . Thus, if h > u, then
dv/dt is negative for all ¢, so th=0.1fh < w, then dv/dt is positive for all ¢,
50 t" = 1. The individuals with / = p are indifferent among all tax rates. If F is
absolutely continuous with respect to Lebesgue measure, then {h = u} is a set
of measure zero in the population, which we can ignore.

Thus there are only two ideal tax rates for the polity: zero and one. The
function W is given by

w(0)=0
V(t)=1—F(w) forallt,0 <t <1.

This says the fraction of society whose ideal tax is less than ¢, for any ¢ < 1, is
precisely the fraction whose income is greater than .
Now F(u) > F(m) = %, soW(t) < % for all t. This is a case where {t | V() >

1} is empty, and so the proof of Theorem 1.1 tells us that (1, 1) is a Downs

2
political equilibrium. The reader may verify that the equilibrium is unique.

In words, this example says that, if the majority of citizens have income (or
wealth) less than the mean income (wealth) and if income redistribution is
the only issue, then the unique Downs political equilibrium entails a complete
redistribution of income to the mean.

Examples 1.1 and 1.2 make the point that what is key for Theorem 1.1 is
the unidimensionality of the policy space. The dimension of the type space
can be large. The term “median voter” conjures up a voter whose frait is
median in the space of types: but this only makes sense for unidimensional type
spaces. Theorem 1.1 is thus more general than the “median voter theorem.”
Nevertheless, its logic is almost the same as the classical median voter theorem
(with unidimensional type spaces).

Part of the confusion in the literature between the type space and the policy
space is due to the following example, which is perhaps the most popular
illustration of the Downsian logic.
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Example 1.4 The preferences of voters are given by
V(t> a) = —1/2(1’ - a)za

where a € A, A is areal interval, and the population is distributed according to
F on A.

These preferences are called Euclidean, because a citizen’s utility is just minus
one-half the square of the Euclidean distance to his ideal point, a. Thus his
ideal policy is his type. (Note that dv/dt = a — t, so a’s ideal point is a.) If F is
absolutely continuous with respect to Lebesgue measure then W is continuous,
and Theorem 1.1 says that the unique Downs political equilibrium is (¢*, t*)
where t* = a* and F(a*) = %

It is pedagogically unfortunate that political scientists use Euclidean prefer-
ences so frequently, for their use obscures the important distinction between
the type space and the policy space.

Some authors work with a variant of the Downs model, in which each party’s
goal is to maximize the fraction of the vote it receives. We have defined p (¢!, t?)
as the fraction of the vote received by party 1, and so under this formulation

(1.11) I 5 = p(t, P and T2 (¢, ) = 1 — p(t!, £2).

Call this the vote-maximizing model.

It is easy to see that Theorem 1.1 also characterizes the equilibria of the
vote-maximizing model. For consider the pair (t*, t*), which is a Downs equi-
librium. At this policy pair, each party receives p = % the vote. If either party
deviates, it receives at most one-half the vote. So (¢*, t*) is a vote-maximizing
political equilibrium as well. Conversely, the reader can convince herself that
if (¢, %) isa vote-maximizing equilibrium it is also a Downs equilibrium.

The identity between the vote-maximizing equilibria and Downs equilibria
fails to hold, however, when uncertainty is introduced (see Chapter 2). At that
point, one must decide which model is preferable.

In my view, any model that predicts that parties propose the same policy
in equilibrium is inconsistent with other background postulates of a realistic
theory: that voters are rational and that party building requires commitment,
financial or otherwise, from groups of citizens. For if both parties propose
the same policy and voters know this will occur, why should anyone spend
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resources building a particular party? So the Downs model is only coherent
within a broader framework if running elections and building parties are cost-
less enterprises.

Nevertheless the Downs model has had tremendous influence in the devel-
opment of formal theories of politics, because for years it was the only game
in town. This chapter in the history of political science shows the impact that a
single, formal model can have on the work and perceptions of social scientists.

The Downs model is one of opportunist politics, because it assumes that
parties or candidates are motivated only by the desire to win office, not the
desire to implement particular policies. As Downs wrote,

[Party members] act solely in order to obtain the income, prestige, and power
which come from being in office. Thus politicians in our model never seek
office as a means of carrying out particular policies; their only goal is to reap
the rewards of holding office per se.

... Upon this reasoning rests the fundamental hypothesis of our model:
parties formulate policies in order to win elections, rather than win elections
to formulate policies. (Downs 1957, 28)

Thus for Downs, policies were merely instrumental devices for putting can-
didates into office. Yet from political history, it appears that parties are formed
by interest groups (and coalitions thereof) to advance their interests. If this is
s0, then, as I wrote earlier, one could interpret the Downs model as one of com-
peting candidates, where—for some reason—parties completely lack control of
their candidates.

There is a notable contrast here with the development of formal economic
theory. The general equilibrium model, which developed roughly over the cen-
tury 1880—1960, assumed that firms maximize profits. Only in the early 1970s,
with the first formal models of the “principal-agent problem,” did the distinc-
tion between the manager and the owner of the firm enter formal economic
theory. (Of course Berle and Means (1932) had introduced the distinction in-
formally decades earlier.) Thus until 1970, formal economic theory assumed
the manager of a firm to be a perfect agent of the firm’s owners. In formal po-
litical theory, however, exactly the opposite occurred. The first formal political
model (Downs) assumed that candidates were completely imperfect agents of
their parties.

In my view, the trajectory of the history of political thought, on this issue,
is unfortunate. For history tells us, I believe, that the main feature of party
competition is the competition between interest groups in the polity, not the
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competition between opportunist politicians. The latter competition may be
important, but it is not the first aspect of political competition one should
attempt to model.

1.3 The Wittman Model

Almost contemporaneously with Downs, Seymour Martin Lipset ([1960]
1994) argued, in another influential book, that political parties are the instru-
ments of various economic classes or, more generally, interest groups. Lipset
studied the political history of the first half of the twentieth century, where par-
ties were socialist, fascist, communist, or liberal—names deriving from their
preferences over policies. Lipset’s book, however, made no imprint on formal
political theory, a misfortune due—in large part, I believe—to his not having
formulated a simple mathematical model of electoral equilibrium. As I noted
earlier, Downs was able to do that by applying the elegant spatial model of
Hotelling. Lipset does not refer to Downs’s book, surely evidence of the lack of
cross-fertilization between different methodological schools. Their views on
the nature of party competition were diametrically opposed.

It was not until 1973 that Donald Wittman proposed the first formal model
of political competition in which parties are partisan or ideological in the sense
of possessing preference orders over the policy space T. Letv' : T —R,i =1, 2,
be the von Neumann—Morgenstern (vINM) utility functions representing the
preferences of parties 1 and 2. (Thus the parties will be ranking lotteries on
policy space.) Wittman postulated that each party’s goal is to maximize its
expected utility; that is,

(1.12a) I ) = o (@h, Avieh + A = 7L )i,
(1.12b)  T12(¢Y, 5 = w (L, v (Y + 1 — w (¢, )2 ().

A political equilibrium of this model will be called a Wittman (later, a reformist)
political equilibrium. In this section we analyze only the model with certainty,
where the function 7 is given by (1.3), and T is unidimensional.

One may interpret the Wittman model as one of parties that represent
different interest groups: here, v! and v? represent the policy preferences of
two groups of citizens—or some aggregation of the preferences of groups of
citizens.

Although the Wittman model seems more faithful to political history, it does
not enable us to escape the unfortunate conclusion that political equilibria
consist in both parties playing the same policy.
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Our environment is the same as in section 1.2. T is the policy space, a real
interval, H is the sample space of citizen types, in some real space, and F is
the probability distribution on H characterizing the citizenry. We next state an
assumption.

A5 (Monotonicity) For any pair of policies ¢!, t? € T, where t! < t2, there
exists a policy ¢’ such that Q (¢!, 1?) = H” .

That is, the set of citizens who prefer ¢! to t? is precisely the set whose ideal
policy is less than some number #'. Call this the monotonicity axiom, which
says, informally, that the set of types who prefer a small policy to a large policy
are all those whose ideal policies are not too large. This assumption holds in
most applications.

Let 7! be the ideal policy of party 1 and 72 the ideal policy of party 2. Let ¢*
be such that ¥ (t*) = % We now state:

Theorem 1.2 Let Al, A2, A3, and A5 hold. Furthermore, suppose that

(a) the function \V is continuous and strictly increasing on T, and
b))t <t* <72

Then (t*, t*) is the unique Wittman political equilibrium.

The form of Theorem 1.2 is similar to that of Theorem 1.1. t* is the “median
policy” in the sense that exactly one-half the population have ideal policies
less than ¢*. Here, however, we postulate a new property, monotonicity, and
also that the parties are “polarized” in the sense that their ideal policies lie on
opposite sides of the median policy.

We first prove a lemma.

Lemma 1.4 Let the premises of Theorem 1.2 hold. Let t' < t' <t < t* be four
policies such that Q(t', t) = H'. Then F(Q (', t?)) > F(Q(t!, t?)).

Proof:
1. Define the function #(¢€) by

Q'+ e, 12 =H'"©,

for € in the domain [0, > — t!). t(¢) is well defined by A5.

2. We show ¢(¢) is strictly monotone increasing. It cannot be monotone
decreasing because as € — t* — t!, it is clear that t(¢) — t2. But t*> > f = t(0).
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3. Therefore, unless ¢ (¢) is strictly monotone increasing, there must be values
€1, € in [0, t* — t) such that t(¢,) = t(¢,): that is,

Q'+ e, ) =Q(t' +6,tH =1,

where Q # H. It follows that the closure of the set € contains a type who is
indifferent among three points: t! + €, t! + ¢,, and t2. This contradicts single-
peakedness. Consequently ¢(¢€) must be strictly monotone increasing.

4. By A5, there exists a policy  such that
Q) =H".

By paragraph 3, it follows that 7 > 7, and since W is strictly increasing, it follows
that W (7) > W(?). But this means that F(Q (¢, t?)) > F(Q (¢!, t?)). =

We are now ready to prove the theorem.

Proof of Theorem 1.2:

1. We first show that (¢*, t*) is a Wittman equilibrium. Assumption (a)
implies (Lemma 1.3) that ¢* is a strict Condorcet winner. We have

I (¢%, %) = vi(t")
T12(¢%, ) = v2(tY).

Suppose party 1 deviates to t # t*. Then 7 (¢, t*) = 0 and so IT! (¢, t*) = v!(¢¥).
Hence there is no profitable deviation for party 1; likewise for party 2. Hence
(t*, t*) is a Wittman political equilibrium.

2. The remainder of the proof shows uniqueness. We first observe that if
(¢, t?) were another equilibrium, then t' < t* < ¢2. Suppose to the contrary
that t! and t? were located on the same side of t*—say t* > t! > t*. Consider
the coalition of citizens H* *, for small € > 0. These form a majority coalition,
by assumption (a), and by single-peakedness (A2) they all prefer ¢! to t*. Hence
t! defeats t* for sure. Thus

e, ) =vehH i=1,2
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But party 1 can profitably deviate to t*; it will still be the case that 7z (t*, £?) = 1,
and so

(%, %) =v' (t%) > v' (1)),

by single-peakedness.

Next consider the case t? > t' = t*. A strict majority prefers ¢! to t%. By
continuity a strict majority prefers t* — € to t* for small € > 0. Therefore
7 (t* — €, t?) = 1. By continuity of v',

Y —e) > vith),
and so we have
M(t* — e, 1) =vI(t" — €) > v (t*) = T (¢%, 12).

So party 1 can profitably deviate to t* — €. The other possible cases can be
similarly disposed of (a good exercise for the reader), showing that any other
Wittman equilibrium (¢!, £?) must be of the form t! < t* < ¢2.

3. Suppose, then, we have a Wittman equilibrium (¢!, t?) where t! < t* < ¢2.
It must be the case that 7 (¢!, t?) = % For if m = 0, then party 1 can deviate
to t* and increase its payoff from v!(t?) to v!(¢t*). And if 7 = 1 then party
2 can, in like manner, increase its payoff by deviating from t* to t*. Hence
!, 2) = 107/ + vi(?).

4. Note that party 1 cannot prefer t* to ¢, or it would deviate to ¢. Similarly,
party 2 cannot prefer ¢! to 2.

5.Since 7 (', t?) = 1, it follows that F(Q (¢!, 12)) = 3 = F(Q(#% 1)). All we
need to note here is that, by A3, the set of citizens who are indifferent between
t! and t? has measure zero.

6. By A5, it follows that there is a policy ' such that Q(¢', 1) = H". It
therefore follows, by step 5, that U (¢') = %, which, by (a), uniquely determines
t':in fact, t' = t*.

7. We next remark that party 1 strictly prefers t! to t>. We know by step
4 it cannot strictly prefer t* to t!, but it could conceivably be indifferent
between t! and t%. Suppose v!(t!) = v!(t?). Then, by single-peakedness of
vl <! <2 By (b), t! < 1! < t* < 2. Lemma 1.4 now applies, and tells us
that F(Q (7, %)) > F(Q(t', %) = 1. Thus w (¢, t*) = 1, and hence if party 1
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deviates to ! (from t!) its payoff increases from 1 (v! (') 4+ v! (%)) to v!(z1),
its ideal! Hence (¢!, t?) would not be an equilibrium. Thus v!(t') > v!(£?).

8. Now apply Lemma 1.4 to the four policies t! < t! + € < t* < t?, where €
is small and positive. We conclude F(Q (¢! + ¢, 1)) > F(Q (¢!, %)) = 1, and so
7 (t' + €, t?) = 1. Therefore a deviation by party 1 from t! to t! + € increases
its payoff from 3 (v!(¢!) + v!(#?)) to v! (¢! + €). Since v! (1?) < v'(¢'), thisis an
unambiguous increase in payoff for € sufficiently small.

Hence (¢!, £?) is not a Wittman equilibrium, which concludes the proof.

Note that we never assumed that H is unidimensional (but see below). Thus
again—as in Theorem 1.1—we see that the “median policy” result is a feature
of the unidimensionality of the policy space, not the unidimensionality of the
space of types.*

Note that assumption (b) is essential to the conclusion of Theorem 1.2.
Suppose, to the contrary, that t* < t! < 2. Then it is easy to see that (¢!, T!) is
a Wittman equilibrium. There are other Wittman equilibria (the reader should
check), but they all deliver ' as the elected policy.

Although H need not lie in R, monotonicity does imply that H is “essen-
tially unidimensional.” To be precise, if monotonicity holds, then types may be
“reparameterized” in terms of their ideal points—that is, points in the unidi-
mensional set T. For suppose h' and h? are two types that have the same ideal
point, t. Let ¢! and #? be any two policies, such that t! < t*; by monotonic-
ity, there is a policy ¢’ such that Q (¢!, ) = H'. If t < ¢, then both k' and h?
must prefer ¢! to t% if t > ¢’ then both h' and h? must weakly prefer ¢* to t'.
But in this case it follows that either both are indifferent between t! and ¢2, or
both prefer ¢ to t'; for suppose, to the contrary, that v(t!, h') = v(t%, h') and
v(t!, h*) < v(¢?, h?). Then we can find a policy ¢ near t! such that h! prefers
t? to t? and h? prefers t? to >, which contradicts monotonicity. It therefore
follows that h! and h? have identical (ordinal) preferences on the policy space.
We can therefore reparameterize types, naming a type by its ideal point. This,
of course, would change the probability measure on the set of types.

Despite this remark, it is convenient to have Theorem 1.2, because often
the set of types presents itself as a multidimensional set. Although the list of

4. An easier theorem is available if we assume that H C R: see Roemer (1994a, Theorem 2.1).
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(t, 1)

(a,b)

45°

Figure 1.4

premises of Theorem 1.2 is fairly long, they are all satisfied in many models.
Following are some examples.

Example 1.5 Let H be a convex, compact set in RZ, let T be an interval in R,
and, for (a, b) € H, let

v(t,a,b) = -1t —a)’ — 1t — b~

Let F be a probability measure on H which is equivalent to Lebesgue measure.
The ideal point of type (a, b) is the policy #*? = (a + b)/2. (Compute this by
solving dv/dt = 0.) To avoid problems, assume that T is sufficiently large that
every type’s ideal policy lies in the interior of T. Geometrically, (a, b)’s utility
at ¢ is minus one-half the distance squared from (a, b) to the point (%, t): see
Figure 1.4. Thus, (a, b)’s ideal policy is the coordinate of the point on the 45°
line closest to (a, b).
Let * be defined by

(1.13) F (!(a, b) | QT—H? < t*}) = %
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Here t* is well defined, because F is equivalent to Lebesgue measure. Thus
exactly half the population have ideal policies less than ¢*. Therefore W (¢*) = %
More generally, we have

Y(t)=F ({(a, b) | %b < t}) .

Next choose (a;, b,) and (a,, b,) such that

“1‘;b1 <t*<“2+b2,

and define
vi(t) =v(t,a,b),  fori=1,2.

This defines the parties’ preferences.

We check the axioms of Theorem 1.2. Al is obvious. A2 is true because
v(-, a, b) is strictly concave. Premise (a) is true because F is equivalent to
Lebesgue measure: that is,

> = x({(a,b)ﬂTH’gtl})>A<{(a,b)|“7+b5t2}>,

and so the same inequality holds when we substitute F for A, which means W
is strictly increasing. Continuity of W is obvious. Premise (b) is true by choice
of (a;, b)) and (a,, b,).

We are left with A3 and A5; we check A3 first. A type (a, b) is indifferent
between policies ¢! and t* exactly when

(t'—a)+ (' = b’ =" —a)’+ (- b,
which reduces to
t+P=a+b.

For given (t!, t?), the set {(a, b) | a + b =t' + t?} is a line in R?, which has
Lebesgue measure zero, and hence F-measure zero. Finally, we check A5. Let t!
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and t? be a pair of distinct policies, t! < 2. Then we may compute that
QL ) ={(ab)|a+b=<t'+13.

But this is identical to the set

({(a, b) | a;rb < t}) —H

where t' = 1(t! 4 7). Hence Q(t!, t?) = HY, as required.
All the premises are satisfied. It follows that the unique Wittman equilibrium
is (¢, t%).

Although our theorem permits H to be multidimensional, as in the previous
example, the most common applications are to problems where H is an interval
inR.

Example 1.6 The environment is as in Example 1.1, except that we have two
parties whose preferences are given by

Vi) = (1 — b 4 2a(tp)?

VA1) = (1 — R + 2a(tp)'/?,

where h! < m < h%. (Recall that m is median income in this example.) Thus,
party 1 “represents” a poor citizen, and party 2 a rich citizen.

We let the reader check all the premises of Theorem 1.2 except for A5, which
we proceed to check together. The set of types who prefer t! to t2, where ¢! < t2,
is the set of h for whom

1 —tHh+ 20t 'w)'? > (1 = Hh + 2(2 )2,

which reduces to

zalul/Z

h> ————.
NN



36 1 | Competition over a Single Issue

Thus

20[/\1/1/2
Q' t)y={h|h> ———1}.
Vil 4+ /12

Equivalently, we can write this as

1 7\ 2 2
Qt!, 1) = h|<@> >u<%)

Now let

2
g (Yi+VE
= > .
Then, referring to equation (1.9), we see that Q (¢!, ) is exactly H t' and A5 is
demonstrated.
Consequently, the unique Wittman political equilibrium is (¢*, t*).

Example 1.7 This is the same environment as in Example 1.3, where H C R,
and v(t, h) = (1 — t)h + t. We take

Vi =1 -0k +tu  i=1,2,

where h' < m < h?, and m is the median income. F is equivalent to Lebesgue
measure on H. Recall that this example fails to satisfy premise (a) of Theorem
1.2, so the theorem does not apply. Let us compute the Wittman equilibria.
Here there is a continuum of equilibria. Recall that t = 1 is the ideal policy of
all types h < i, and this set constitutes a strict majority since m < j. Any pair
of the form (1, ¢) where t € [0, 1] is a Wittman equilibrium: the policy t =1
wins for sure. These are the only Wittman equilibria.

1.4 Conclusion

We have examined the two principal formal models of political competition in
an environment where parties are certain about voter behavior, and the policy
space is unidimensional. The Downs model is ahistorical in not recognizing
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that political competition is almost always between parties that have policy
preferences. That the model yields a unique equilibrium in which policies are
undifferentiated is therefore not too upsetting. We then introduced parties that
are partisan, a la Lipset and Wittman, but did not succeed in escaping the
Downsian conclusion. At this point, the “median policy” result seems quite
robust. As we shall see in Chapter 3, the introduction of uncertainty into these
two models does produce a clear differentiation between the predictions they
make.
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Modeling Party Uncertainty

2.1 Introduction

It hardly need be said that uncertainty is paramount in political competition. If
parties were certain of voter behavior, then they would know, after announcing
their policies, that either one party would win for sure or there would be
a tie. In the former case, it would be difficult for the losing party to carry
out electioneering activities. And in the latter case, the parties might as well
flip a coin to see which one would take office, rather than carrying out an
expensive campaign. So party uncertainty about voter behavior is necessary
to understand why the expensive process of running elections is undertaken.

Perhaps the degree of uncertainty about voter behavior has decreased during
the last generation, when polling techniques have become more sophisticated.
Indeed, there may be very little uncertainty on election day concerning which
party will win. But election-day uncertainty is not the relevant uncertainty:
rather, we are concerned with the uncertainty about which party will win at
the point that the parties announce their policies. Of course if parties could
costlessly change their announced policies up to the day of the election, then
election-day uncertainty would be relevant. But they cannot: constantly chang-
ing its policy in reaction to polls would harm the party’s credibility with the
voters. After all, what kind of principles could that kind of party have?

Indeed, in the European case at least, party manifestos are written at conven-
tions some months prior to the election, and some researchers claim that the
policies parties run on are very close to what their manifestos announce (see
Klingermann, Hofferbert, and Budge 1994). Because voters’ views will change
during the process of debate between parties, there is often a significant degree
of uncertainty as to the probability of victory at the time that manifestos are
published.

38
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In this chapter we shall present three models of electoral uncertainty that
will be used in the rest of the book. All three models derive the probability-of-
victory function, 7, from prior assumptions. Indeed, that is the only reason
for this chapter. If we were willing simply to postulate a functionz : T x T —
[0, 1], we could avoid the work we shall undertake here. It is, however, clearly
desirable to derive the function 7 from more basic assumptions about voter
behavior and party beliefs. Nevertheless, our models of uncertainty will not
go “all the way down” in trying to understand the uncertainty at the level of
the individual voter. They will, if you wish, be “macro” models of uncertainty
regarding the response of the electorate to pairs of policies.

Why have three models? Because sometimes one model is easier to handle in
theoretical analysis than another and sometimes one model is more tractable
than another in a particular application. We cannot expect any single model to
do all jobs well, and so it is wise to have a toolkit with more than one tool.! The
next three sections develop what I call the state-space model of uncertainty, the
error-distribution model, and the finite-type model.

2.2 The State-Space Approach to Uncertainty

We assume, as usual, a policy space T C R", a sample space of types H, and a
function v: T x H — R with the usual properties. We assume in addition that
there is a set of states S, equipped with a probability distribution o. For each
state s € S there is given a probability measure F, on H. The interpretation is
that in state of the world s, the distribution of voter types is given by F, on H.

What are the possible interpretations of this model? The simplest is that the
set of voters is different in different states. What is relevant for electoral victory
is the set of voters, not the set of citizens. If some voters abstain on election day,
and the set of abstainers is subject to a stochastic element, then the distribution
of voter types is uncertain. For instance, s might be a proxy for the weather,
which is stochastic: on rainy days, wealthy citizens might be disproportionately
represented among the voters. The parties may know the exact relation between
turnout and the weather (F,), but they do not know what the weather (s) will be.

Another interpretation is that all citizens vote, but their preferences over
policies are not known with certainty by the parties. Voter preferences over
policies may indeed alter during the course of political debate. This does not

1. See Aumann (1987), who makes this point with respect to game theory.
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mean that voters are irrational in the sense of not having stable preferences. We
may suppose that each voter has stable preferences over fundamentals—such
as private consumption and consumption of public goods—but that she may
very well be uncertain about which policies to prefer because she is uncertain
about the mapping from policies to fundamentals. This may be so because she
is uncertain about some parameters of the economy, such as the efficiency with
which the government converts tax revenues into public goods or the elasticity
of labor supply with respect to tax rates. This parameter uncertainty induces
uncertain policy preferences in voters, even if they have stable preferences over
fundamentals. I believe it is for this reason that much political debate between
parties takes place over the values of economic parameters—that is, how the
economy will respond to particular policies. (See Roemer 1994b; Schultz 1995.)

We may proceed, given these data, to write down the probability-of-victory
function 7. As before, let Q (¢!, t?) be the set of types who prefer t! to t2. We
shall from now on suppose that if t! # t2, then A(I(t!, t*)) = 0. We shall further
suppose that all measures F, are absolutely continuous with respect to A, and so
t! # t? implies F (I (!, t?)) = 0 for all 5. The fraction of voters who prefer ¢! to
t? in state s is F(Q(¢', £%)). Policy ' wins the election when F(Q (¢!, %)) > 3.
Let

S, ) ={seS|IF(Qt,t*) > 1}.

S(t!, t?) is the set of states in which t! defeats t2. What is the probability that
the event S(¢!, ) will occur? Precisely o (S(t', t%)), and so

(2.1) 7', 12) = o (St} ).

(Note that t! would also win one-half the time in those states s for which
F(Q(t, %) = % In all interesting cases, this set has o-measure zero, and so
we may disregard it. We do so in order not to clutter up formula (2.1).)

Example 2.1 H is a real interval, T = [0, 1], the mean population income
is known to be w, but the set of voters depends on the weather, indexed by
s € S=10, 1]. Let o be the uniform measure on S. Preferences and policies are
as in Example 1.7: the issue is to choose a proportional tax rate to redistribute
income. Thus v(t, h) = (1 — t)h + tu.

We can specify the uncertainty as follows. In state s the median voter’s income
is mg; this is all we must know about F,. We assume 1, is a strictly decreasing
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continuous function of s. (Perhaps s = 0 means inclement weather and s = 1
means fine weather.)
As we computed in Example 1.6,

t'>?= QL tH={h|h<u
Now F.({h < u}) > % if and only if m_ < . Thus
22 a@,t)=o(s|m, <u.

Now suppose m,, > @ > m,. Since my, is strictly decreasing and continuous
in s, there exists a (unique) number s* such that m . = . It follows that

{s|m,<ul={sel0,1]|s>s"}.
But since o is the uniform measure, the probability of this event is
(2.3) () =1—5s%
The reader should check, as an exercise, that
gy > m,; >u=nthH)=0
W= my>m = a(thtH) =1.

Thus the interesting case is m, > u > m;.
Note that, in this simple example, the probability of victory is constant as
long as t! > 2, for s* is a datum of our problem. We can state formally:

1—s* ift!>¢?
1 ,2 .
(i, t)=11 ift! =42

2
s* ift! < 2.

Thus although all the data of our problem are continuous functions and well
behaved, the function 7 is discontinuous (unless, singularly, s* = %).

This shows the danger of taking 7 as a primitive and endowing it with nice
properties, like continuity. Even in this extremely nonpathological model, 7 is
discontinuous.
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Example 2.2 Here we return to Example 1.1, where T = [0, 1], H is a positive
real interval, and

v(t,h) = (1 — O)h + 20 (tp) /2.

We will again assume that S = [0, 1], o is the uniform measure, and m_ is strictly
decreasing and continuous in s. Recall that

2 1/2
(2.4) t1<t2:>§2(t1,t2):{h|h> e }

Vil Ve
It follows that F,(Q(t', £*)) > 1 exactly when

20{/,111/2

m,> ———.
TV Ve

For in states where (2.5) holds, the set Q (¢!, t?) includes more than one-half
the voters. Consequently

(2.5)

ZaMI/Z
Sth,th={s|m > ————1}.
RISV

Let us assume that there exists an s* such that

2u 1/2
(2.6) - e

VNN

Then S(t', t?) = {s < s*} and so w (¢!, t?) = s*.
But note, unlike Example 2.1, s* is now a function of (¢!, £2), from (2.6).
Since we have the function m,, we can solve for s* of (2.6): call the solution
s*(t!, t%). Because m, is continuous, so is the function s*(-, -). We have

s*(t1, t2) ift! <2
a(th 2 = ! if t! = ¢?
1—s (L t?) ift! > 2

Is the function 7 continuous? The only question is about 7’s behavior on the
line ¢! = #. Clearly 7 is discontinuous on this line, because 7 is constantly %
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on it, but the s* that solves (2.6) when t! = *> = t depends upon the particular
value of t. Elsewhere, 7 is continuous.

This example shows that the simple step-function nature of v in Example 2.1
was an artifact of the linearity of v.

Example 2.3 A two-dimensional trait space
We return to Example 1.2, where

v(t, o, h) = (1 — )h + 20 (tp) /2.

H=10,h]isa positive (income) interval, and « also varies over an interval
A = [0, a]. The set of types {(«, h)} is a set B C R%. Let G, be the probability
distribution of traits in state s; again take S = [0, 1], and o the uniform distri-
bution. We suppose as well that G, has a density function g («, h). We know
that

2 1/2
2.7) t1<t2=>sz(t1,t2)={(a,h)|h> il }

Vi + /e

1,2y _ _2ul? : : 1,2y ;
Define ¢(t', t°) = NAEL In state s, the fraction of voters in Q(¢', t°) is
G,(2(t', t?)), which we may write, using (2.7), as:

h

(2.8) / / g (o, hydh do.

A ag(tht?)

As we have previously noted, this is the fraction of types above the line
h=ap(t', 1)

in the (a, h) plane. We now impose an assumption (to simplify life) that the
fraction of types above any line of positive slope through the origin in the («, h)
plane is decreasing in s. Then there will be a number s*(t!, t?) such that

h

(2.9) / / g (o, hydh da = %,

A agp(t!t?)
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and t! will defeat > whenever s < s*(t!, t2). Therefore, as before

s*(th, %) ift! <2
a(th, ¥ = ! ift! =2
1 —s*(th, 12 ift! > t%

where s*(t!, t2) is the function implicitly defined by equation (2.9).

Example 2.4 A two-dimensional issue space and trait space.

Suppose voters care about two things, their income (x) and the position of the
government on race (z). A voter of type (h, a) has a pretax income of h and a
racial view of a. Her utility function is

u(x,z) =x — %a(z —a)’.

A policy is a pair (t, z), where ¢ is a uniform income tax rate, and z is the racial
position of the government. Thus, the citizen (h, a)’s indirect utility function
over tax rates and racial positions is

(2.10)  v(t,zzh,a)=1 —t)h+tu — %a(z —a)’.

Type (h, a) liesina set B C R?, where h € H and a € A = [R, 4], and in state s,
the set of voters is distributed according to the probability distribution G, with
density g..

We may compute that voter (h, a) prefers policy (t;, z;) to (t, z,), iff:

_ . Atth—p)

(2.1la) z+ ————>a ifAz>0,
alAz
At(h —
(2.11b) Z—{—M <a ifAz <0,
alAz
(2.11c) h<pu ifAz=0 and At <0,
(2.11d) h>pn if Az=0 and At>0,

where Az=z, —z;, At =t —t;and z = (2, + 2,) /2.
Because there are four cases, there are four different expressions for the
function 7, depending upon the region of (¢, z) space in which the policy is



2.3 | An Error-Distribution Model 45

located. For instance, in the case of (2.11a), the fraction of voters in state s who
prefer (1, z,) to (t, z,) is given by

=, At(h—p)
+ alAz

(2.12) / / g.(h, a) da dh.
H —00

With a suitable monotonicity assumption on the behavior of {G,}, we can
derive a formula for 7 as a function of the policies (#;, z;) and (¢, z,), as in
the earlier examples.

I have gone into some detail to indicate that, if we can estimate the distri-
bution of traits (in an application), and also propose a probability measure
on the state space, then we can compute the function 7. The state-space ap-
proach is, moreover, tractable for theoretical investigations, as will be seen in
later chapters.

There are, however, somewhat less abstract approaches to uncertainty, which
may therefore be more appealing, to which we now turn.

2.3 An Error-Distribution Model of Uncertainty

This model is the simplest of the three discussed in this chapter. We postulate,
now, only one probability distribution F on H. Thus given two policies ¢! and
t2, there is an unambiguous number F(Q2(t!, t2)), the fraction of citizens who
prefer t! to t2. But we now say that parties are only confident about this number
up to a margin of error: they believe that the true fraction of citizens who prefer
t! to t? lies in an interval E(t!, t) = (F(Q(t', t*)) — B, F(Q(t}, t?)) + B), for
some § > 0 and is distributed—Ilet us say—uniformly on this interval. Thus
7 (¢!, t2) is the probability that a random variable uniformly distributed on
E(t!, t?) is greater than one-half.

Hence
0 if FQU, ) +p<1
1.2 1
2.13) 7wt} = % if LeE@, )
1 it F(Q,1?)—p> %

The formula above applies in the standard case that t! # t? and F(I (¢, ?)) =
0. In the case when t! = ¢2, the formula does not apply, and we define 7 = % As
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in the state-space model, the function 7 is not generally continuous on the line
t! = t2. Consider, for instance, Example 2.1 with the present model. If m < u
for F, we have

t' > = FQt', 1)) =F(u) > 1.

If F(u) > 1/2 + B, then (¢!, t*) = 1. Now let z‘j1 approach t? from above. On
this sequence of pairs (tjl, 2), 7 is constantly 1, but in the limit its value is
one-half.

One attractive feature of the error-distribution model is that it clarifies the
distinction between the probability of victory and the expected fraction of the
vote for a party. Suppose that F(Q (¢!, t?)) = .519 and 8 = .02. Then the prob-
ability of a victory by party 1 is approximately .97, while its expected vote share
is only .519. Thus it is perfectly consistent to say that we expect a party to win
by only a 1% margin, but we are almost sure it will win.

This shows that the two characterizations of the Downs model, as one where
parties (i) maximize the probability of victory, and (ii) maximize the expected
vote fraction, are very different. Consider the following example. A party has
a choice of two actions (strategies), A and B. Under A, there are two possible
outcomes: with probability %, the party receives 49% of the vote, and with
probability 1, it receives 60% of the vote. Under B it receives 51% of the
vote for sure. The expected vote fraction under A is 54.5%, but it only wins
with probability %, while under B, it wins for sure. The rational action for a
Downsian party, I claim, is B.

The view that a Downsian party should maximize its expected vote is only
coherent if in addition we stipulate that the election is not of the “winner takes
all” type. For instance, under proportional representation, a Downsian party
might well want to maximize its expected vote fraction.

We state a more general form of the error-distribution model of uncertainty.
The share of the vote received by party 1 will be F(Q (¢!, t?)) + €, where € is a
random variable distributed according to a probability measure X on support
[—B, B], with distribution function X. Then?

m(t!, ') =1-X(5 - KQ(', %),

where it is understood that X (y) is zero (one) for y < —8(y > B).

2. The derivation is F(Q) + € > 1 & € > 1 — F(Q); thus 7 (¢!, t?) = Prob [e > 11— F(Q)] =
1-X (! —FQ).
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2.4 A Finite-Type Model

In the examples given thus far, there has always been a continuum of types.
But there are times when it is appropriate to model a polity as consisting of a
finite number of types. A finite-type polity might be either one with a finite
population or one with a continuum of individuals for each of a finite number
of types. For instance, in Chapter 11, we shall model a polity as consisting of
four classes, while all members of each class are identical (same preferences,
same endowments), up to the degree of resolution in the model.

In this case the error-distribution model of uncertainty often does not work
well, because it may almost always deliver probabilities of either zero or one.
(Consider the case of three types, no one of which constitutes a majority. For
any arbitrary pair of policies (¢!, #2), it will usually be the case that the members
of two types will prefer t! to t? (or vice versa). Then, with the error-distribution
model, 7 (¢!, t2) = 1 (respectively, zero).)

An alternative is as follows. Let H = {h', h?, ..., h™}. Suppose that the
fraction of population that is of type h™ is w,,. Let us restrict v(t, h) to be
non-negative. Facing a policy pair (¢!, #?), we say that the smaller the ratio
v(t2, W™) /v (t, k™), the larger the fraction of citizens of type h™ who will vote
for t!. In particular, we might suppose that if v(¢2, k™) = v(t!, k™), then exactly
one-half of type m citizens will vote for each policy.’

Consider the function f : [0, co] — [—1, 1] defined by

1—x

@14 fe) = —

The function f has the following properties:

(a) f(0)=1,f(1) =0,and f(c0) = —1;
(b) f is monotone decreasing from 1 to —1 as x increases from 0 to infinity;
(c) f is continuous and differentiable;

(d) f(1/x) = —f (x).

I suggest that f is the simplest function with these four characteristics.
Denote

vt h)
SR =x(t,t°, h).

3. For this model to be coherent, it is necessary that the utility function v be “ratio-scale
measurable.” For an explanation, see Roemer (1996, chap. 1).
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We now assume that the fraction of the population that will vote for ¢! over
t? is a random variable of the form

M
(215) ¢t t5el, e =D to (1 + € fx(, £, 1)),
i=1

where €’ are i.i.d. real random variables on the support [0, 1].

To understand formula (2.15) first notice that for any policy ¢, ¢ (¢, t; €) = %
(This follows from the fact that f (1) = 0.) Thus if both parties propose the same
policy, they split the vote equally.

The ith term, %a)i(l + €'f (x(t1, t2, h'))), is the mass of type K’ voters who will
vote for t'. This mass can vary from zero to '. If type i is indifferent between
t! and ¢ then x(t', t, h') = 1, and so exactly mass %a)i votes for t!. The more
favorable ¢! is to type h' relative to t, the higher the fraction of its members that
will, on average, vote for t'. Suppose that the mean of €’ is % Then the mass of
type i who are expected to vote for t' is 1w,(1 + 1f (x(t', t, h"))), which is, of
course, decreasing in x, as it should be.

There is a consistency check we must make. For the model to make sense, the
fraction who vote for t? over t!' should be

M1 1
the) =) —o(1+efl——]),
050 =3 30 (11 ()
By property (d) above, we have
Mo , A
Pt e) = ; Sl — € fx(t, 2, B,
from which it immediately follows that
2.16) oLt e)+ ot the)=1.
The model is consistent.
Now the probability that ¢! defeats ? is Prob[¢ (¢!, t% €) > 3]. By (2.15)

this is

(217) (', £) =Prob[ Y wf (x(t', £, 1)) > 0].
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(0,1) (1, 1)

—a2/al

62

(1,0)

Figure 2.1

To gain further intuition, let us take an example in which M = 2. Let a' =
o'f (x(t', t2, h')). Then

w(t', t*) = Probla'e! + a’e? > 0].

Suppose further that €’ are uniformly distributed on [0, 1]. Ifa' > 0 and a*> < 0
thenm (¢!, t?) = Prob[e! > —a?/a'€?], which s just the area in the square above
the line of slope —a?/a' in Figure 2.1. Clearly, this is simple to compute, given
the data.

Like the two previous models, this one also produces a discontinuous func-
tion 7. Consider a sequence tjl — t2. Although x(tjl, t% h) — 1 for all b, it is
possible that all types prefer ¢! to ¢ for all j, and so f (x(#/, t* h)) > 0 for all
7> h. In this case JT(tjl, t?) = 1 for all j, but in the limit 7 = %

An alternative to assuming that €’ are i.i.d. random variables is to assume
that (!, €2) is a vector-valued random variable uniformly distributed on the
positive orthant of the unit circle. Stillassuming thata, > 0and a, < 0, 7 (¢!, t*)
is now the area shaded in Figure 2.2. Since 6 = arctan(—a?/a'), we have*

Ly T/2=6 2 &
(2.18) T(t,t7) = =1 arctan .
/2 T al

«_»

4. Note that the symbol “7” on the r.h.s. of (2.18) denotes the number “pi,” not the function .
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el

(0,1)

€l = —_g2/gle2

> €2
(1,0)

Figure 2.2

The relative virtue of this approach, over the formulation giving rise to Figure
2.1, is that, in that earlier formulation, the formula for the shaded area (hence,
) takes two different forms, depending on whether the line €' = —(a?/a')e?
lies above or below (1,1). In Figure 2.2, however, the circle has no corners, and
so formula (2.18) always works.

Turning to motivation, why is it not the case that, whenever x(t!, t2, h) < 1,
all type h citizens vote for t'? We can say that this fails to occur because our
model is incomplete. Parties have many characteristics that voters care about
that are not captured in our policy space T. What we hope to do in a model is
to capture the most important characteristics of policy in the specification of
T. Voters of type h are not really identical: they share a common set of traits
(h) that we believe is important for determining their preferences, but they
in fact have other noncommon characteristics that influence preferences and
behavior.

Finally, we may say that politicians or parties do not always communicate
policies unambiguously, and so different voters may interpret a party’s policies
differently.

We could (as with the error-distribution model) probably represent the
finite-type model as a special case of the state-space model, but the represen-
tation presented in this section is more felicitous for applications.
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There are plenty of justifications for adopting the present model in a finite-
type economy. They all seem to say that the economy really has an infinite
number of types, but for analytical reasons, it may be the prudent research
strategy to ignore much of the variation.

2.5 Conclusion

It is important to note that the approaches to modeling uncertainty proposed
in this chapter deliver uncertainty at the aggregate level, even when there is
a continuum of voters. It would not do to postulate that each citizen-type’s
behavior is stochastic, but that the random variables that describe individual
behavior are independent, for then uncertainty in the aggregate would disap-
pear. For example, if there is a continuum of citizens of a given type, and each
votes for policy ¢t with probability .4, and the individual random variables are
i.i.d., then exactly 40% of the type votes for policy t—aggregate uncertainty has
disappeared. Uncertainty in the aggregate appears, generally speaking, when
the behaviors of members of a type are correlated, and are also correlated to
some random event (the “state”). It is aggregate uncertainty that is important
for politics.

There are many models in the literature that work with a finite set of citizens
and postulate uncertainty at the individual level that is uncorrelated across
citizens. Because the set of voters is finite, these models will deliver uncertainty
in the aggregate. But these models do not generalize to models with uncertainty
when the set of citizens is “large,” and are therefore of limited interest.
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Unidimensional Policy Spaces with Uncertainty

3.1 Introduction

Let the policy space T be unidimensional: T = [¢, 7]. As Chapter 1 showed,
if parties are certain about voter behavior, then political equilibria exist in
both the Downs and the Wittman models, and in them both parties propose
the same policy, the median ideal policy. In this chapter we introduce party
uncertainty about voter behavior and show that we now (in one case) escape
the tyranny of the median policy.

3.2 The Downs Model

We postulate a function v(¢, h) obeying Al and A2. Let us first work with the
error-distribution model of uncertainty. We therefore postulate a distribution
of traits F on H, and A3.

To be precise, we assume that the fraction of the vote for party 1, given
the policy pair (t!, t2), is F(Q(t!, t?)) + € where € is a random variable with
support [—8, B]. We further suppose that € is distributed according to a con-
tinuous probability measure X on [—g, 8], with a distribution function X. We
suppose that X is symmetric with mean zero. (This implies that X(0) = %.)

The probability that ¢! defeats 2, for ¢! # ¢2, is thus

m(t', t*) = Prob[F(Q(t, *) + € > 1]
= Prob[e > 1 — F(Q(t', £*))]

(3.1) =1-X( —FQ(', %))

Of course, for any ¢ we define 7 (¢, t) = 1

5
52



3.2 | The Downs Model 53

Let * be the median ideal policy. We have:

Theorem 3.1 With the error-distribution model of uncertainty, (t*, t*) is the
unique Downs equilibrium.

Proof:

1. We first verify that (t*, t*) is a Downs equilibrium. Suppose party 1 were to
deviate to t. Now 7 (¢, t*) = 1 — X (3 — F(Q(t, t))). But F(Q (¢, t*)) < 1 and
SO % —F(Q#,t")) =y >0.But X(y) > % since X(y) > X(0) = % Therefore
w(t, t*) < %

Consequently there are no profitable deviations for either party.

2. The reader can check, as an exercise, that if (¢, ¢) is a Downs equilibrium,
then t = t*.

3. Finally, suppose that (¢!, t?) is a Downs equilibrium and ! # #2. Since
m(th?) = % itfollows thatX(% —FQ, ) = % and hence, since X (0) = %,
F(Q(t', 1) = 1.

Therefore either t! < t* < t? or t? < t* < t!. It immediately follows that
either party can profitably deviate to t*.
This concludes the proof. =

We now turn to the state-space model of uncertainty. Thus we have a con-
tinuum of probability measures {F, | s € S}. We assume S = [0, 1] and s is
distributed according to a continuous probability measure o on S, with CDF 0.

We further suppose A4 and A5 as restrictions on v.

Let #® be the median ideal policy in state s. That is,

2m(s)
F(H"")=1.
We finally assume:

A6 1" is strictly monotonic in s.

We shall further suppose, without loss of generality, that i is increasing in s.
We now derive the function 7. In the state-space model, if t! # ¢ then:

n(t',1?) =0 ({s| B(Q(', 1)) > 1}).
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By A5, there exists a policy ¢’ such that H" = Q (¢!, £2), and so
(', =0 ({s | FS(Ht/) > %}) .

But F.(H "y > % if and only if ¢’ > ). Now invoke the fact that " is
increasing in s. There are three cases.

Case (1) ™9 > ¢/ Then m (¢!, t*) = 0.

Case (2) t' > "D Then m(¢', t?) = 1.

Case (3) There exists a number s* € [0, 1] such that ' = "), In this case
we have

(3.2) rith ) =0 ({s |s < s*}) =0 (s%).

Of course, s* is a function of ' which is a function of (¢, t%), so we should write
s* =s*(th, 7).
Let 5 be the median state (that is, o (5) = %), and define t* = "0,

Theorem 3.2 With the state-space model of uncertainty, the unique Downs
equilibrium is (t*, t¥).

Proof:

1. We first show that (¢*, t*) is a Downs equilibrium. Let us examine whether
party 1 can profitably deviate to ¢ < t*. For s > 5, we have

< ?m(g) < ?m(S),

and so in those states a majority vote for ¢* against ¢, and so ¢ loses. By
continuity of m and v, it follows that ¢* also defeats ¢ for s in an interval
(5 —4,59), for small § > 0. Therefore 7 (¢, t*) < %, and the deviation is unprof-
itable. A similar argument establishes that > t* is not a profitable deviation
for party 1 either. Of course the same reasoning applies to party 2, and the claim
is established.

2. Let (¢, t) be a Downs equilibrium. The reader can verify that, if t # t*,
either party can profitably deviate to t*.

3. Let (t!, t?) be a Downs equilibrium, ¢! # 2. Of course, 7 (t!, t?) = %,
and so it follows that s*(¢, t?) =35. (See (3.2).) Let , H' = Q(¢', t?), by A5.
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Then ¢ must be the ideal policy of the median voter in state s*(t!, t*)—that
is, ' = 1"®_ Tt follows that either party can profitably deviate to " and win
with probability greater than one-half. =

One might call Theorem 3.2 the “double median” theorem. The unique
political equilibrium consists in both parties’ proposing the median ideal policy
in the median state.!

Our conclusion is that introducing uncertainty into the unidimensional
model does not enable us to escape the conclusion that, with Downsian politics,
policy differentiation fails to occur.

3.3 The Wittman Model: An Example

We begin with two examples which illustrate the essential property of the
Wittman model with uncertainty—that it engenders equilibria in which the
parties propose different policies.

Example 3.1 All citizens have preferences over income (x) and a public good
(G) given by

o 2
u(x,G)=x—E(G—,u) ,

where p is the mean of F, the population distribution of income. Provision
of $1 worth of the public good requires an expenditure of $1 per capita. The
single issue is the level of proportional income tax, ¢, which finances the public
good. Thus the indirect utility function of type h is

2
vt h) = (1= Dh— (= p? = (1= Dh = =t = D2
We shall use the error-distribution model of uncertainty. We have

_EQE, ) -5+

w(th 1) 28

1. Naturally this theorem depends upon the fact that the state space S is unidimensional.
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We assume that party i represents a voter with income #, where h' < u < h?.
Thus party i maximizes the expected utility of a voter with vNM utility function
v(t, h'). We compute that

t>2=Q¢L ) ={h|h<au’( -1},
where t = (t' + %) /2.

Now assume that o« =4, u =
[0, 1]. It follows that

%, and that F is the uniform distribution on

(1-D+p—3
28 '

a(th 12 =

The first-order conditions for a Wittman equilibrium (", %) are

* * 81_[2 * *
", 7)) =0, ﬁ(tl,tz)zo.

oIt
ot!

We may compute that the EO.C.s reduce to

At(h' — (1 =ty =2B+31-DH' +t' = 1)
(3.3)
At(h* — (1 —1)=28+1—H(*+1*—1),

where At = t! — £2.
1

Let us now specialize to the case where hl = 3 —€ and W2 = % + €, for some

; 11,1
number € > 0. Symmetry suggests we try for asolution of the form t* = 5 + 3,

21

3= %8. Substituting these values into (3.3) yields a solution

2ep

>
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Thus (tl*, tz*) satisfies the F.O.C.s for equilibrium, but it remains to show that
t'" is indeed a maximum of the conditional payoff function IT'(t, t**), with a
similar statement for >

We now specify 8 = 0.2. Figure 3.1 plots the conditional payoff functions
(there labeled V' and V?) for several values of €; by inspection, we see that "
and t*" are indeed maxima for their respective conditional payoff functions.

As promised, the Wittman model with uncertainty delivers a political equi-
librium with differentiated policies.

We also note that although the data of this model are as simple and smooth
as one could ask for—including a function 7 that is linear in the policies—
the conditional payoff functions (see Figure 3.1) are not quasi-concave. Thus
the Wittman model is intrinsically “badly behaved.” The standard approach
to proving the existence of Nash equilibrium is to show that the condi-
tional payoff functions in the game are quasi-concave, and then to apply
Kakutani’s fixed-point theorem. (Elaboration will follow below.) But that
straightforward approach cannot work here, because even the simplest exam-
ple does not display the desired property of quasi-concave payoff functions.
Thus a general proof of existence of Wittman equilibrium will necessarily be
“hard.”?

Example 3.2 Let H=[0,1], T=R, and v(¢t, h) = — | t — h |. Let h be dis-
tributed according to F on H with density f. We use the error-distribution
model of uncertainty, where the random variable is uniformly distributed on

[—B, B], so

F(SE5 + 5
2

a1} = , fort! <2

Let party i have utility function v (¢, h'), where h!' < m < h?, and m is the median
type.

2. The existence proofs in Wittman (1983) and Wittman (1990) are incorrect. For discussion,
see Roemer (1997).
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74! € =0.05
0.0975
0.0950 -

0.0925 -

0.0875
0.0850

0.0825

V2 € =0.05
0.1475
0.1450 -

0.1425 -

] 0.2 0.4 0.6 0.8 1.0
0.1375

0.1350

0.1325

Figure 3.1a Conditional payoff functions at equilibrium for Example 3.1,
€ =0.05 (t!" = 0.54, " = 0.46)
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Vi €=0.15

& €=0.15

Figure 3.1b Conditional payoff functions at equilibrium for Example 3.1,
€=0.15 (t"" = 0.59, " = 0.41)
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Let (t", t*") be a Wittman equilibrium, and assume that h' < ¢! < > < h?.
Then the parties’ payoff functions, near (t'", t2*) can be written

1 2 1 2
2 2B 2 2B ’
() ()
1 2 2 1 2 2
¢l ) == ' — 1? - - 2 — K?
( ) 2-i— 2 ( )+ 5 2B ( )

The reader can compute that the F.O.C.s for Nash equilibrium reduce to
(" =t (1) = 2B =2(F(7) = }),
" = )f () + 28 =2(F(F) - ),

where 7 = (t'" + t2") /2. These two equations imply that

_ 1
2F() - ) =0,

andso F(t) = %, which means that = m. It follows that
tl* + tz* tz* _ tl* IB
=m and =—
2 2 f(m)

from which we deduce

v_ B r_ . B
CET T ey U T

The policy pair (", £**) satisfies the F.O.C.s for a Wittman equilibrium; indeed,
the pair form a Wittman equilibrium when h' < ¢ and #** < h2.Itis a peculiar
(indeed, Downsian) feature of this example that the equilibrium is independent
of (h%, h?).

The example illustrates the fact that, unlike Downs equilibrium, Wittman
equilibrium depends in general on the nature of the distribution F, not simply
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on its median value, m. Thus if we alter F so that the median remains un-
changed, but f (1) changes, then the Wittman equilibrium changes, while the
Downs equilibrium does not. This is why Wittman equilibrium is an inherently
more complex idea than Downs equilibrium—and, incidentally, why there are
few examples where one can calculate Wittman equilibrium (as we have done
in this section) by hand.

Note that as 8 approaches zero, we approach “median-voter politics” in this
example’s equilibrium.

3.4 Existence of Wittman Equilibrium

We shall assume through this section that A1, A2, A3, and A4 hold, and that
T and H are intervals in R. Let H = [h, h]. Let the parties have single-peaked
vNM utility functions v! and v* on T.

In addition, we shall assume:

A7 For any pair (¢!, t?) with t! > 2, the function v(t!, h) — v(t2, h) is strictly
decreasing’ in h.

A8 v is differentiable.
Consider the condition:

Single-crossing property (SCP) For any distinct pair ¢!, t* € T, the equation
v(t!, h) = v(t?, h) has at most one solution in h.

We denote the solution to the equation in SCP, if there is one, by h(t!, t2).

The name “single-crossing property” derives from the fact that if v(t', h) =
v(t2, h), then the pair {t!, £?} is an “indifference curve” for h. Single-peakedness
implies it is the complete indifference curve. If there were two values of h
for which this equation held, then two types would have indifference curves
intersecting in two points. Hence SCP says that any two indifference curves of
two types intersect at most once. Note that:

Lemma3.1 A7 => SCP.

3. We could more generally assume strict monotonicity; “decreasing” is assumed for the sake
of concreteness.
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Proof:
Foranyt! > 2, v(t', h) — v(t?, h) is strictly decreasing in h. There is therefore
at most one h at which that function is zero. =

Lemma 3.2 A2, A7, and A8 imply that h(-, -) is differentiable,

oh | , oh |
F(t’t)<0 and W(t’t)<0'

Proof:

1. First assume ¢! > #2.
The function h(t!, t?) is defined by
35) vt h(t', ) = v, h(t, ).

Differentiating (3.5) implicitly w.r.t. t! yields

G
TAGORE TGO

h 1 .2
ﬁ(t)t)z

(3.6)
where h = h(t!, ). By the implicit function theorem, the function h is there-
fore differentiable as long as the denominator in (3.6) does not vanish. The
denominator of (3.6) is positive by A7, and the numerator is negative. (To see
the last claim, note that t! must be on the decreasing branch of v(-, h), since
v(t', h) = v(t?, h) and t' > t%.) Therefore %(tl, ?) < 0.

Similarly, we have

" (', 1" = Gl .
%(tla h) - %(t2> h)

(3.7) FYs)

The denominator of (3.7) is negative and the numerator is positive.

2.Nowlet t! < t2. Then the denominator of (3.6) is negative and the numera-
tor is positive. Likewise the denominator of (3.7) is positive and the numerator
is negative. =

We shall now specialize to the model in which 7 is defined by the error-
distribution model of uncertainty. Let € be a random variable distributed
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according to a continuous distribution X, and
m(t', ) = Prob[F(Q(t', 1) + € > 1]
(3.8) = Prob[e > 1 — F(Q(t', £*))]
=1-X@3 —FQ¢', ).
A7 and A8 permit another useful lemma:

Lemma3.3 AssumeA2, A7 and AS. Lett' > . Then nt(t, ) and 7w (F', t) are
decreasing in t at t and ?2, respectively. If < fz, then 71(?1, t) and m (t, fz) are
increasingin t att° and T' respectively.

Proof:
1. 7' > #* implies, by A7, that (7', ) = [h, h(T', 7). Thus (7', 7)) =
1-X(5— F(h(T',7%))). Since h is decreasing in ¢!, 7 is decreasing in t'.
Similarly, 7 is decreasing in 2.
2. Let T < 7. Then A7 implies that (', 7) = (W(7', ), h]. Now we see
that 77 (¢, °) is increasing in  at 7', and so on. ®

Define
Wi ) = vi(eY) — v (1)
WA, 1) = i) — v,
and note that we can write the payoff functions of the parties as
' %) = w (', HW(E, D) + &,
(¢!, 1) = (1 — n((t, )W, ) + &y,

where k; is not a function of t'. Since party i wishes to choose t' to maximize
IT’ given a policy by the other party, we may without harm replace the payoff
function by the functions 7 W! and (1 — ) W2, respectively.

Definition 3.1 Given a policy 2, the set of decent responses by party 1 is

AY D) = {t | n(t, HW(t, %) > 0).
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Similarly, given ¢!, the set of decent responses of party 2 is
A ={t| Q=" )W, 1) > 0}

A decent response by party 1 to t? is a policy ¢ that party 1 prefers to t* (that
is, W (¢, t) > 0) and that has positive probability of defeating t*( (t, t*) > 0).
Clearly, in considering a response to ¢, party 1 might as well limit its search to
AL(t?). If AY(t?) = @, party 1 can do no better than to respond with 2.

We have

Lemma 3.4 Assume A2 and A7, and assume the error-distribution model of
uncertainty. Then, for any policy t%, the set R(t?) = {t | 7 (¢, t?) > 0} is convex.

Proof:

1. Let t > t2. Let h(t, t*) be the unique type h that is indifferent between t
and 2 (if there is one). Then, by A7, Q(t, t?) = {h < h(t, t?)}.

2.Lett’, t” € R(t?). We must show that any point in the interval (¢, t”) is also

in R(12).

There are two cases to consider.

Case (i) t >t">t%
Let t € (t”, t). It suffices to show that F(Q2(t, t2)) > F(Q2(¢, t?)). By step 1, it
suffices to show that h(t, t*) > h(t’, t*). Note that type h(t, t) prefers t to t2,
by single-peakedness. This proves that h(t, t2) > h(t, t?).

Case (ii)) t' >t>>1".
The argument given in Case (i) shows that if ¢ € (t%, t') then t € R(¢?). It
remains only to show that ¢ € (t”, t?) also lies in R(¢?). Now, Q(t", t?) =
{h > h(t", t*)}, by A7. Thus it suffices to show that h(t, t*) < h(t”, t*), since
Q(t, t*) = {h > h(t, t?)}. But the required inequality is true by virtue of the
fact that type h(t”, t?) prefers t to t* (again, invoke single-peakedness).

3. The other possible cases are identical to one of these two. =

As a consequence of Lemma 3.4, we have

Corollary 3.1 Let Al, A2, and A7 hold. Then for all t', t* € T, the sets A'(t?)
and A*(tY) are convex (intervals).
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Proof:

We prove the corollary for Al(t?). Let t, t' € A'(t?). Then n(t, t?) > 0,
T(t,t%) > 0, ¥!l(t,t?) > 0,and W' (¢, t?) > 0. Since v is single-peaked in t, so is
Wl inits firstargument, and hence, forany A € [0, 1], U (At + (1 — A)t/, %) >
0.

By Lemma 3.4, it follows that (At + (1 — 1)/, t?) > 0. Hence At + (1 —
Mt € Al(t?), proving that Al(#?) is convex and hence an interval. =

We can now state the existence theorem.

Theorem 3.3 Let Al, A2, A3, A7, and A8 hold. Let X be a continuous distri-
bution. Suppose that T1! is a quasi-concave function of t', for any t2, on A(t?),
and T1? is a quasi-concave function of t2, for any t', on A*(t'). Then a Wittman
equilibrium exists.

Let 71(t2) be the set of best responses by party 1 to t? and 7*(t') be the set of
best responses by party 2 to t'. We define the following refinements of 7! and
72

A2y i Al(g2
rl(tz)z{r(t) TfA ) #0
2 fA D) =0

20y P2 if AT £ o
r(”_{ LA =0

To see that r' is a refinement of 7, we need only note that when A!(t?) = @, t2
isa best response (by party 1) to t?; a similar statement holds when A%(t') = @.
Now define

r(tl, tz) = rl(tz) X rz(tl).

Thenr:T x T —— T x T.If r is upper hemicontinuous, everywhere non-
empty, and convex valued, then by Kakutani’s fixed-point theorem, it has a
fixed point. A fixed point of r is Wittman equilibrium. For t!' € r(t*) means
that ¢! is a best response to t? and t> € r*(t') means ¢ is a best response to t'.

The point is: we shall be able to show that r is indeed convex valued, a fact
that we know, from Example 3.1 and Figure 3.1, is not generally true of the
correspondence 7(t!, t2) = 71(¢!) x #2(t?). By definition the function r is non-
empty. Hence Theorem 3.3 will be proved by proving:
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Lemma3.5 Under the assumptions of Theorem 3.3, the correspondence ris upper
hemicontinuous and convex valued.

Proof:

1.If A1(t?) = @, then r!(t?) is a point, and hence a convex set. If A! () # @,
then 71(¢?) is the set of maximizers of IT!(:, t?) on the interval (see Corol-
lary 3.1) Al(#?). Since I1(-, t?) is quasi-concave on an interval, its maximizers
form a convex set. Therefore r!(t?) is convex in this case also. Similarly, r*(¢!)
is convex valued; it follows that r is convex valuedon T x T.

2. It remains to show that r is upper hemicontinuous. This will follow if r!
and 2 are upper hemicontinuous. We demonstrate this for r!.

Let i} — #* and ti € r'(t}), where t} — ' We must show 7' € r1(7).

3. We may view I1! as a function of ¢! with parameter t. According to the
theorem of the maximum (see Mathematical Appendix), the mapping from 2
to the maximizers of IT1!(-, t?) is an upper hemicontinuous correspondence.
(Observe that TT! is a continuous function.) Since r!(¢?) is exactly the set of
maximizers of IT!(-, t?) when A!(¢?) # @, we need only worry about the cases
where for infinitely many k, A'(}) = @, and/or A'(#?) = @.

Thus we have two cases to consider.
Case (i) For infinitely many k, A'(t}) = @.
Case (ii) For finitely many k, A'(t}) = @, and AYF) = 0.

4. Case (i) We may assume that A'(#}) = @ for all k. Then £} = # for all k.
Since t; — # and t— 7! it follows that 7' = 7°. Suppose that 2 & rl(5); then
decent responses to - exist, and so there exists ! such that 7 (7', ) W! (7, ) >
0, which implies that, for large k, there exists 7} such that (i}, /) W!'(2}, 1) > 0.
But this contradicts the supposition that A () = @.

5. Case (ii) By continuity of T1!, we have

lim m(th, OV, ) =2 (T, )W, ) =0.
— 00

This limit is non-negative, since for every k, the product 7 (¢}, )W (¢}, 1)
is positive, because Al(t,f) # @. Therefore it must be zero, since Al(?z) = Q.
Since 7 = r1(*) (because AL(7) = @), we must show 7' = 7-.

6. Moreover, the limit argument also shows that 7 (7', 7) > 0and U1(7, )
> 0, since n(?,lc, ?i) and \I-'l(?}(, fi) are positive for all k.
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7. Suppose, on the contrary, that 7' 7. Without loss of generality, suppose
' > . From step 5, either 7(f, ) =0o0r V(F, ) =0.
Suppose first that n(?l, ?2) = 0; since, for points (tkl, t,f) very close to
(7', 7) we know that 7 (t}, t}) > 0, it follows that*

FQ(, 7)) =1-8.

We know as well that Q(fl,fz) ={h< h(?l,fz)}, and so F(h(?l,?z)) = % - B.

8.Ifwe decrease 7 tof' — &, then by Lemma 3.2, h(?1 -3, fz) > h(?l,?z), and
50, since Fis continuous, F(h(' — §,7%)) > % — B; therefore (' — 8,7 > 0.
Hence it must be the case that \Ill(fl -3, ?2) <0, or else 7' — 5 would be a
decent response to .

Because this holds for all small § > 0, it must be that llll(?l, ?2) < 0; by
step 6, W!(7', 7°) = 0. But by single-peakedness, this implies that (¢, 7*) > 0
for all points ¢ € (£, ?1)—contradicting the fact that W!(¥' — 8, 7%) < 0. This
disposes of the possibility that 77 (', 7) = 0.

9. The final possibility is that W'(7', 7°) = 0. Again, we have W!(t,7°) > 0
for all t e (¥, 1'). We know that F(h(?', 7)) > % — B. We know that
h(t — 8,7 > h(i, 1) by Lemma 3.2, and so F(h(t' = 8,) > % — B, which
implies that 7(t' —8,) > 0. Therefore, ' — & is a decent response to £, an
impossibility. This proves the lemma. =

The discussion prior to the statement of Lemma 3.3 shows that Theorem 3.4
is now proved.

Our next task is to provide conditions under which the conditional payoff
functions IT'(-, t?) and T1%(t!, -) are quasi-concave on the sets A!(¢?) and
A%(tY), respectively.

As we have noted, party 1 chooses t to maximize 7 (t, t2)W!(¢, t2). In turn,
this function is quasi-concave on A!(¢?) if log[7 (¢, t?)W!(t, ?)] is concave on
A'(t?), since applying a strictly monotonic transformation to a function will
not disturb its maxima. Therefore it suffices that log 7 (t, t?) + log W(t, t*) be
a concave function on ¢. log Wl(¢, £2) is concave if v is concave in t; a sufficient
condition is therefore that log 7 (¢, t*) and v! be concave in ¢ since the sum of
concave functions is concave.

4. Here we assume for simplicity of exposition that X is the uniform distribution on [—8, 8].
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Similarly, a sufficient condition for (1 — 7 (¢!, t))W2(¢', t?) to be quasi-
concave on A?(t!) is that log(1 — 7 (¢!, t)) and v* be concave in t. Thus we
have

Corollary3.2 LetAl, A2, A3, A7, and A8 hold; letlog 7t (t, t*) and v! be concave
on Al(t?), and log(1 — (¢!, t)) and v* be concave on A*(t'). Then a Wittman
equilibrium exists.

Let us return to Example 3.1. A1, A2, A3, A7, and A8 hold. We have

log 7 (t, t*) = log

_l—ﬂ—l- _1
22ﬂ'3 2|, and
B 4 1
etoand)

log(1 — 7t 1) = log 2B

These are both concave functions of ¢, as are v! and v*. Thus Corollary 3.1
suffices to prove the existence of a Wittman equilibrium in that example.

It would surely be more satisfactory to supply sufficient conditions for the
existence of Wittman equilibria that were stated directly in terms of the data
of the model, {F, X, , v!, v?}, instead of the derived function . No simple
condition stated in terms of these primitives is known.

A theorem similar to 3.3 may be proved for the state-space model of uncer-
tainty (see Roemer 1997).

In sum, we find that in most interesting examples Wittman equilibria exist,
but a truly satisfactory general existence theorem is not known.

As a final remark, we note that A5, the monotonicity axiom, and A7 are
closely related.

Proposition 3.1 Let " be decreasing in h, dim T = dim H = 1, and Al and
A2. Then A7=>A5.

Proof:

Let t! < 2. A7 implies that Q(¢', t2) = (h(t', £2), h). Since " is decreasing,
(h(t', t%), h] is the set of types whose ideal points are less than the ideal point
of h(t!, t?). But this implies A5.
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If there is no & indifferent between ¢! and t2, then Q (¢!, t?) is either @ or H,
which again implies the existence of #' such that Q (¢!, t?) = H U (Take t' =1t
ort.) =

3.5 Properties of Wittman Equilibrium

We shall continue to employ the error-distribution model of uncertainty in this
section.

Proposition 3.2 Assume A3, A7, and A8. Assume the error-distribution model
of uncertainty, and assume that X is a continuous distribution. If h(t', t?) is
defined at (t', t%) then 7 is differentiable at (t', t°).

Proof: We have either
m(t, ) =1-X(& — F(h(t', 1)) or
m(t', 1)) =1— X5+ F(h(t, %)),

depending on whether ¢! > (<)t2. The distribution functions X and F, being
continuous, possess densities (that is, derivatives) x and f, respectively. The
derivative of h(:, -) is given by (3.6) and (3.7) as long as the denominators in
those expressions do not vanish. They do not vanish, by A7.

Consequently, the chain rule implies that 7 is differentiable at (¢!, t). =

Definition 3.2 A Wittman equilibrium (¢!, t?) is trivial if either t' = t* or
(¢!, t?) is zero or one.

We now introduce the idea that the two parties are in some sense polarized
in their interests. Let #! and 72 represent the ideal policies of party 1 and party
2, and let £ be the median ideal policy.

A9 P> ims f2

Theorem 3.4 Assume A2, A3, A7, and A9, and the continuity of X. Then there
exists no trivial Wittman equilibrium.
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Proof:

1. We need only consider equilibria (¢!, t?) where t!, t> € [, t']. It follows
that t? < t1, for if t! < ? then party 1 could increase its payoff by deviating to
£,

2. Suppose there is a Wittman equilibrium where t! = t> = * # ™. Let
t* > ™, Then party 2 can increase both its probability of victory and its utility
by decreasing its proposal to t* — §.

A similar argument holds if t* < .

3. Suppose t' = t? = . Because ¢ is a best response of party 1 to ¢, we
have

forallt w(t, f™MW!(t, ™) <0,

because the product 7 W! is zero at t = ™. But the continuity of X and F imply
that 7 is positive at t = £ 4 § for small § > 0. Therefore W! (1" & §, ™) < 0,
which means that " is the maximum of v!, contradicting A9.

4. Finally, let (¢!, t*) be a Wittman equilibrium where 7 (¢!, t?) = 0 and
t? < t!. Party 1’s payoff is v!(t?). It follows that " < t%: for if £ < #" then
party 1 could play t* + §, which would give it a positive probability of winning
and, indeed, a higher payoff than v!(£?).

We therefore must have ™ < t2. It must therefore be the case that
F(Q(t!, %) = 3 — B: for if F(Q(t', 1%) < 1 — B then party 2 could devi-
ate slightly toward " without lowering its probability of victory from one, and
increase its payoff. But this means that if party 1 deviates to t' — 8, it has a
positive probability of winning—and its payoff at (t!' — 8, t?) is greater than
v1(t?), a contradiction.

A similar argument works if 7 (¢!, t?) =1. =

Theorem 3.4 tells us that when parties are polarized in the sense of A9, then all
Wittman equilibria involve differentiated policies: the escape from the “tyranny
of the median voter” is achieved.

We should expect that as uncertainty decreases, Wittman equilibrium con-
verges to the Wittman equilibrium under certainty, in which both parties play
™ (Theorem 1.2). To study this question in the error-distribution uncertainty
model, let X be the uniform measure on [—8, +8]; then “decreasing uncer-
tainty” is easily modeled as “decreasing 8.
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Theorem 3.5 Assume A2, A3, A7, and A9. Let w be defined according to error-
distribution uncertainty where X(€) = (1/28)€ + 1/2. Let (t'(B), t*(B)) be a
Wittman equilibrium, viewing B as a parameter. Then

lim £/(B) =" for i=1,2.
dimy B or i

Proof:

1. From Theorem 3.4, we know that, for all 3,

0 <7t (B), 1*(B) < 1.

It follows that

F(h(t'(B), *(B)) — B < 3 < F(h(t'(B), *(B))) + B.

Hence, lim,_,, h(t'(B), *(B)) = m.

2. There are two possibilities: either t'(B) — m for i =1, 2, or there is a
subsequence B/ — Osuch thatt!(8/) — ', £2(B)) —> 1,7 > T, and v(T', m) =
v(7*, m). We must show that the second case is impossible.

3. Suppose, then, that such a subsequence {7} exists. The payoff of party
1 tends to %(Vl(fl) + v1(#%) as j — o0. Let § be a small positive number; I
claim that for large j, party 1 should deviate to 7' — 8. We know that F(h(T' —
8,1)) > %, so for small enough g/, n(f' =8, 2(B)) = 1. Consequently, for
large j, by this deviation, party 1 can assure itself of the payoff vi(E = 8) >
LEY + 01 ().

This contradicts the fact that (t'(87), t2(87)) is a Wittman equilibrium.

3.6 Summary

We summarize the main results of Chapters 1 and 3 in Figure 3.2. Of the four
models obtained by varying the choices of “party type” and “information,”
only one produces the realistic result that parties propose different policies in
equilibrium. Since divergence is a fact of political life, this is a strong argument
for the claim that parties are not Downsian, but are interested in policies.
That inference, however, is not watertight, because there is at least one
other way of generating policy differentiation without discarding the Downsian
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Certainty Uncertainty

Downs Policy Policy
convergence | convergence
Wittman Policy Policy

convergence divergence

Figure 3.2

assumption. That way assumes the potential for a third party to enter the
competition. If all parties are Downsian, the possibility of entry can produce
equilibria with two parties in the race, and policy differentiation at equilibrium
(Palfrey 1984; Osborne 1995).

Furthermore, there are ways of inducing equilibrium policy differentiation
without uncertainty if parties have policy preferences. Ortufio-Ortin (1997)
does so by postulating that parties care about the fraction of votes that they
get, perhaps because representation is proportional or because a higher vote
fraction will facilitate the party’s ability to implement its policy once in office.
Llavador (2000) also achieves policy differentiation with partisan parties, but
without uncertainty, by introducing the possibility of voter abstention. Never-
theless, in his model, policy convergence is the norm.
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Applications of the Wittman Model

4.1 Simple Models of Redistribution: The Politics of Extremism

Reconsider Example 2.1. Citizens vote on a purely redistributive proportional
income tax f; we worked with the state-space model of uncertainty. We showed
that, for ! > 2, w (¢!, t?) = s*, a constant, where s* € (0, 1).

Now assume that the parties have utility functions

Vi) =v(t, )y =1 -k +tp, i=1,2
where h! < u < h%. We have
Proposition 4.1 There is a unique Wittman equilibrium, ", ) = (1, 0).

Proof:
The payoff functions for the parties are equivalent to

(', ) =s* ' (u — b + (1 = )2 (u — ')

P!, 1) = 5"t (u = B*) + (1 = s (u = ).
Thus

(', 0) =s*t'(u — h')

M°(1, 1) = s*(u — b*) + (1 — s (u — b*)

Since i — h' > 0, it follows that IT!(t', 0) is maximized at ¢! = 1; since ;. —
h* < 0, it follows that T12(1, t?) is maximized at t* = 0, which shows that
(t", t2%) is a Wittman equilibrium. It is left as an exercise to show that the
equilibrium is unique. =

73
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According to Theorem 3.2, the Downs equilibrium of this model is (t*, t*),
where t* is the ideal policy of the median voter in the median state. That could
be either (0, 0) or (1, 1), depending on whether that “double median” voter
has income greater or less than .

There is thus a sharp contrast between the prediction of the Downs and
Wittman models in this example. The starkness of the polarity of equilibrium
policies in the Wittman model is due to 7’s being constant. Note as well that the
Wittman equilibrium does not depend on the relative position of the citizens
with median and mean income, in contrast to the Downs model.

Here is a second example exhibiting political extremism. Suppose a polity
must choose a quadratic income tax to finance public services in a given
amount R per capita. Let H = [0, h]. An individual with income h will pay
a tax of ah? 4 bh under the tax schedule (g, b). Denote the second moment of
population income by u, = [ h*dF, where F is the distribution of types in the
population. Thus the budget-balancing constraint is

ap, +bu =R.
Writing a = (R — bu)/1,, we now think of tax policies as unidimensional,

represented by the marginal tax rate at zero income, b.
No one can pay more taxes than his income, so

ah’ +bh <h,
where h is maximum income. This implies

RE—Mz

b>—
uh— 1,

On the other hand, by looking at small h, we have
b<1,

and so the bounds on b are

Rz—ﬂz

— <b<l.
wh— 1,



4.1 | Simple Models of Redistribution 75

An individual prefers that policy which minimizes his tax liability; thus A
prefers b, to b, exactly when

R—b R—b
L Y AL P Y
My 125
or when
<™ it Ab>o,
n
h>"2 i Ab<o,
"

where Ab=0b, — b,.
Let b, > b,. Then b, defeats b, in state s iff

m5<&,
7

where m, is the median of F,.
Now assume 1, is increasing in s, and let s be uniformly distributed on [0, 1].
Define s* by

Then the probability that b, defeats b, is s*.

Since 7 (b, b,) is constant, it follows that the Wittman equilibrium consists
in each party’s proposing its ideal point, as in the previous example.

Let’s check the ideal points. Type h wants to choose b to

min (R _ b“h + b)
1293

or

min b (1 — h_,u) .
2]
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Hence

n

A Rh —
etz 2T
H mh— 1,

Thus the party representing the wealthy proposes the highest feasible marginal
tax rate—and hence the least progressive income tax, since the associated value
of a will be as small as possible—and the party representing the poor proposes
the lowest marginal tax rate and the most progressive tax policy.

Some authors (for example, Calvert 1985) have claimed that the policies in
Wittman equilibrium are close to the policies of Downs equilibrium. These
examples show that this claim is in general false.

4.2 Politico-Economic Equilibrium with Labor-Supply Elasticity !

Let H = [c, 00), where h is interpreted as the skill level of type h, which means
that output (y) can be produced from skill (h) according to the personal
production function

y = hL,

where L is units of labor time expended by individual .

We suppose that all citizens share the same vINM preferences over output and
labor, represented by a utility function u(y, L).

The policy shall be a redistributive income tax, .

In this example, there is uncertainty about the distribution of types in the
citizenry—that is, in the tax base. All citizens vote. We work with the state-
space approach to uncertainty. The states, s, are uniformly distributed on [0, S],
where S is a positive number. In state s, the probability distribution of types is
F,, the Pareto distribution on H whose density is

s+3 /'
fny = (E> .

c

1. This application is taken from Roemer (1994).
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As usual, denote the distribution function of F, by F,. The mean and median
of F, are given by

(s+3)c u
(4.1) M= 12 m,=25+3¢.
Thus larger s are associated with distributions of citizen types with lower means
and medians.
The formula for the second moment of F, which we denote i, is:

s+3 3
4.2 i, = Wf.(h)dh =
(42)  p /c hf(h) L
Let t be the tax rate and I be the level of tax revenue per capita; those revenues
are redistributed in a lump-sum manner to all citizens. Then the utility of a
citizen who earns y and works L is u((1 — t)y + I, L). We proceed to define an
economic equilibrium.

Definition4.1 An economic equilibrium at tax rate t isa function L : H — R
and a function I : [0, S] — R, such that:

(i) For all h € H, L(h) solves
S 1
max / u((1 — t)hL + I(s), L) =ds.
L Jo S
(ii) For all s € [0, S],
I(s) =/ thL(h)dF (h).
H

This is an equilibrium of the rational expectations type. Statement (i) says
that, if every citizen of any type h expects the lump-sum payment to be I(s)
in state s, then she maximizes expected utility by supplying labor in amount
L(h). Statement (ii) says that if every type h supplies labor L(h), then in state
s, per capita tax revenues will be exactly I(s). Thus labor-supply decisions of
individuals are consistent with income expectations.
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Suppose that (L(-), I(-)) is the unique economic equilibrium at tax rate ¢.
Then a citizen of type h has an indirect utility function

(43) vt )= / w1 = ORLY +1(9), L(h))éds.
0

If we now assume that party i represents a type h' [that is, has YNM prefer-
ences v(-, h')], then the political game is defined, as is its Wittman equilibrium.

We proceed to specify the model further in order to compute Wittman
equilibria. We let u(y, L) = y — («/2)L?, a quasi-linear utility function. We
immediately compute that, for any ¢ and I, the solution of

max u((1—t)hL+ 1, L)

(1—t)h
o

is given by L(t, h) = . Thus quasi-linearity tells us that a citizen’s labor

supply is independent of the size of the lump-sum payment.
Define

1—1t

1'(s) = f h hL(t, h)dF(h) = — it

and note that
! 1—t .1
/ I'(s)ds = —— / L =ds.
0 o 0 S
Then we have

Proposition 4.2 For each t € [0, 1], there is a unique economic equilibrium
(L', I') given by

ray =701 - (ﬁ> i
o (07

Proof:
This follows immediately from the discussion above. ®
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Using (4.2), we compute that

S 1 Log(1+ S
/ fo—ds = c? <1 + ZM) = M(S).
o ' °S S

From (4.3) and Proposition 4.2, we compute that

— 2K _
=0 t0—1)

(4.4) v(t, h) = o

M(S).

We are now ready to compute the function 7. The set of voter types Q (!, t2)
who prefer t! to 2, where t! < t2, is given by

QYY) ={h| W > 2MS)¥ (!, tH)},

where

21—t —t'a—-1thH

Wt 1) = ==y

It follows that the set Q (¢!, t2) is a majority coalition precisely in those states
s for which m, > QM (S)W (¢!, 2))1/2, where my is the skill level of the median
voter in state s. But this is the set of states {s | 22/6+3) 2 > 2M(S)W(t, t7) }, by
(4.1). It follows that 7 (!, t?) = (s*(¢, t?)) /S where

Log 4

172y
LOg 2M(S);Izl(t ,t2)

s*(th, 1Y) =

We can now write down explicitly the payoff functions IT'(¢', t?), where party
i represents a type with skill level /’; hence we can write down the FO.C.s
oIl /ot = 0.

Parameterize the model as follows: ¢ = 20, & = 5, h! = 1,000, h* = 20. Thus
party 2 represents the least-skilled type, and party 1 represents a type who is
in the top 1% of the skill distribution for all Pareto measures {F, | s € [0, S]},
for values of S presented in Table 4.1. The table reports the Wittman equilibria
for various values of S. The larger the value of S, the greater the uncertainty
parties face. We note that (1) policy differentiation increases with the degree of
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uncertainty, and (2) both equilibrium policies appear to converge to the ideal
policy of the median voter in the median state as uncertainty decreases.

Table 4.1 Wittman equilibria in model of section 4.2

S t! t? n i i #mes)
0.1 0.31218 0.315944 0.493515 0 0.396102 0.314087
0.2 0.304612 0.312117 0.48723 0 0.392391 0.308462
0.3 0.297384 0.30859 0.481139 0 0.388844 0.303204
0.4 0.290464 0.305318 0.475234 0 0.385445 0.298273
0.5 0.283827 0.302265 0.469508 0 0.382179 0.293633
1 0.254131 0.289423 0.443306 0 0.367465 0.273931
2 0.207007 0.270678 0.400561 0 0.343614 0.24592
3 0.170226 0.256549 0.366947 0 0.324462 0.226486
4 0.140082 0.24493 0.339607 0 0.308388 0.211889
5 0.11459 0.234951 0.316793 0 0.294527 0.200322
6 0.092553 0.226163 0.297374 0 0.282351 0.190795
7 0.0731893 0.218294 0.280582 0 0.271507 0.18272
8 0.055958 0.211168 0.265874 0 0.261747 0.175725
9 0.0404683 0.204659 0.252864 0 0.252888 0.169561
10 0.0264282 0.198671 0.241225 0 0.244788 0.164056
11 0.0136131 0.193132 0.230757 0 0.23734 0.159086
12 0.00184697 0.187985 0.221273 0 0.230456 0.154557
13 0 0.183182 0.224022 0 0.224064 0.1504
14 0 0.178684 0.228196 0 0.218108 0.146561
15 0 0.17446 0.231605 0 0.212537 0.142996

Note: m(S) is the median type in the median state when the set of states is [0, S].
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4.3 Partisan Dogmatism and Political Extremism

Imagine a polity concerned with two issues: the first is economic redistribution
and the second is “religion.” A citizen type has two traits, h = (w, r), where w
is its income and r is its religious position. Thus F is a probability distribution
onH CR%. Letv(t,z;w,r) = (1 — t)w + tp — (a/2)(z — r)?, where (t,z) isa
policy and u is mean population income. Thus preferences are linear in income
and Euclidean in the religious position (z) of the government.

Suppose there are two parties which are each dogmatic on the religious issue:
this is an issue on which the parties will brook no compromise. Each party puts
forth a dogmatic (constant) position on the religious issue, z' and z*. Suppose
z' < 7%, We use the error-distribution model of uncertainty.

We easily compute that

?+?_w-m¢-ﬂ
2 a(z? -z

Q((tl)zl)’ ((tzazz)) = {(W> Z) | z =<

Of course, we have

F(Qt,2Y), (13,79) +p — 1
28 ’

m((th,z"), (5, 2%) =

Let w take values on a bounded interval; of course, t' € [0, 1]. Now suppose
that z2 — z' is large: then the term ((w — ) (¢! — ¢2))/a(z* — Z') will be small,
which is to say the probability that (¢!, z') defeats (t2, z') will be essentially
independent of the tax policies t' and 2. Indeed, as (z*> — z') — 00, T becomes
independent of the tax policies.

But we know what happens when 7 is independent of the policies: each
party proposes its ideal policy in Wittman equilibrium (see §§ 4.1). Thus
we conclude: the farther apart the two parties are on their dogmatic issue,
the closer will their economic policies be to their ideal points, in Wittman
equilibrium.

Although we have phrased this problem as one with two policy dimensions,
it is, formally speaking, a unidimensional problem, because the positions z'
and z” are fixed, and hence are simply parameters of the problem. If parties
were not dogmatic but strategic with respect to both issues, we could not use
the unidimensional model in analysis.
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4.4 A Dynamic Model of Political Cycles>

In this section we model an idea of Albert Hirschman, that political moods
shift regularly from a public orientation, a concern with large social issues, to
a private orientation, a concern with the material well-being of the individual
or family. Disappointment is the psychological key: “The world I am trying to
understand in this essay is one in which men think they want one thing and then
upon getting it, find out to their dismay that they don’t want it nearly as much as
they thought or don’t want it at all and that something else, of which they were
hardly aware, is what they really want” (Hirschman 1982, 21). Hirschman gives
an interesting piece of linguistic evidence for man’s asymmetrical penchant
for disappointment: he can find no single word for its opposite (pleasurable
surprise) in any language.

There s, as usual, a population distribution of types, F, characterized by their
members’ endowment of income, h. Denote mean income by p and median
income by m. All voters have the same preferences over private income (x) and
a public good (G) given by the utility function

u(x, G) = x + a(s)G'?,

where a(s) is a parameter whose value will be specified presently. We suppose
that all voters have the same preferences, that is, the same value of a(s). We
shall use, in this example, the state-space approach to uncertainty. We define
a(s) = ay + a;s, where a, > 0. Parties are uncertain about the value of s, which
is a random variable whose distribution is governed by a probability measure
S on the sample space [0, 1], with distribution function S.

There are two political parties; the Left represents a voter with income k! and
the Right, a voter with income h?, where h' < . < h?. The single issue is the
tax rate on income; thus

v(t, hys) = (1 — Oh 4+t + a(s) (tp) 3,

and v/(t, s) = v(t, Wy s), for i = 1, 2, are the parties’ utility functions. Thus in
this model, preferences depend on the state, s.

2. This application is taken from Roemer (1995).
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We compute that

(4.5) > ¢? implies Q) = {

I < a(s) /1 }
RGN

Define the r.h.s. of the inequality in (4.5) to be h(t!, t% s). It follows that a
majority vote for ¢! if and only if h(¢!, t%; s) > m, which is equivalent to

(Ve + /) m

R

(The intuition is clear. The Left wins when preferences are sufficiently “publicly
oriented.”) Since a(s) is strictly monotonic, the probability that (4.6) holds is
just

(4.6) a(s) >

(ﬁ%—\/ﬁ)m
I

@t )y=1-=8|a’!

where a~1(X) = (X — a,)/a, is the inverse function of a(s). Define:

(\/t_l-l-\/t_z)m
N/

s(th, ) =a!

We next describe the payoff functions of the parties. The party does not know
the state s, so it does not know the preferences of its constituent in this model;
thus the expected utility of the voter !, from the Left party’s viewpoint, at the
policy pair (¢!, £2), is

1 s(tt?)
(472) '@, tH = / vt 5)dS(s) + / vi(#2, 5)dS(s).
s(t1,12) 0

The first integral averages the utility of voter h! over the various possible values
of s in the region where t! is victorious, and the second integral averages the
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utility of voter h! over the various possible values of s in the region where #2
is victorious. Similarly, the expected utility of voter h? from the Right party’s
viewpoint is

1 s@tLe?)
(4.7v) T2t tH) = / v2(t!, $)dS(s) + f V2(£2, 5)dS(s).
s(t1,12) 0

We next introduce a dynamic element in the determination of the probability
distribution S. The idea here is that the likely value of the parameter a is deter-
mined by the past experiences of the population with regard to the level of pub-
lic goods. Let time—more precisely, elections—be indexed by r =1,2,3 .. ..
I choose §,, the distribution of states at election r, to be a beta distribution
B(2, b,)—these are convenient unimodal distributions defined on the interval
[0, 1]. The mean of this beta distribution is 2/(2 + b,). Recalling that a; > 0,
we can see that it follows that the larger s is, the greater is the population’s rela-
tive preference for the public good, that is, the value a(s). So if b, is small, then
the random variable s has a high mean, and so the public have a high relative
preference for the public good.

Now think of a sequence of electionsr =1, 2, 3, . . .. Define rf as the number
of consecutive elections just before election r that the Right has won, and rl as
the number of consecutive elections just before r that the Left has won. (For
example, if the Right wins election t = 1, 2, 3 then r{ = 3 and r} = 0). For any
r, either rX or R is zero. I define
48)  b=24+mt_,
where ¢,_, is the victorious policy at election r — 1, and where

R .
m,_y—rty, if r

(4.9) m, =

r L .
m,_,+ry if r

(The sequence m, begins with some fixed value m,.) The effect of (4.8)
and (4.9) is to increase the value of b, if the Left has been in power, thus de-
creasing society’s relative preference for the public good, and to decrease the
value of b, if the Right has been in power, thus increasing society’s relative
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preference for the public good. Furthermore, according to (4.9), the longer
a particular party has been in power, the more radically do public prefer-
ences shift “away” from the kind of good it advocates (the Left advocates the
public good and the Right advocates the private good). This is the Hirschman
effect.

We are now ready to simulate electoral histories. I chose the parameter
values m = 30, u =50, h' =20, h* =70, ay, =3, a; =2, m,=1.28, and
t, = 0.27. Thus b, is determined (by equation (4.8)), and so is the probability
distribution S§; = B(2, b;). This allows us to solve for a Wittman equilib-
rium (¢, t7, ;) in the first period, where 7, = 7 (¢}, 7). Now we generate
a random number 7 in the interval [0, 1] according to the uniform dis-
tribution on [0, 1] : if n <, we declare the Left party the winner of the
election, and if > 7, then the Right party is the winner. (These events oc-
cur with probabilities 77, and 1 — 7, respectively.) Now the values rX and
r%, and hence m, and b,, are determined, and so we have the new proba-
bility distribution S, = B(2, b,). Thus we can compute an electoral equilib-
rium in period 2. The recursion proceeds for as many periods as we wish to
simulate.

Table 4.2 presents the first twenty and last twenty elections for a typical
simulation which ran for 100 elections. “Probab” is 7r; the next two columns
report the equilibrium policies of the Left and Right; “Govt” is the party that
won the election, M is m,, and “Avergs” is the mean of the beta distribution
B(2,b,).

Figure 4.1 graphs three-year moving averages of the Right and Left tax poli-
cies (that is, the value of the top figure at time r is 5 (t'_, + £} + £, ) for the
experiment of Table 4.2. What is remarkable is the occurrence of apparent elec-
toral cycles, of various periods. There is, for example, a long upward trend in
tax rates from period 40 to period 73, and then a long downward trend to pe-
riod 85. In fact, these downward and upward trends are not characterized by a
single party’s being in power.

Figure 4.1 is a typical history of electoral politics over a “century.” About
one-tenth of the time, however, we simulate a history like the one in Figure
4.2, with apparently regular political cycles between relatively high and rela-
tively low public provision. Were one a political scientist living in a century
such as the one in Figure 4.2, one might conjecture that a certain regular-
ity in political cycles was an immutable law of democracy. That, however,
would not be the case. Cycling will always be a property of stochastic dynamic
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Table 4.2 Wittman equilibria in Hirschman model

Year Probab TaxL TaxR Govt? M Avergs
1 437165 .284606 135974 0 1.28 460236
2 460498 313151 .135596 0 0.28 495286
3 431142 321102 137704 1 —1.72 .530958
4 36951 .294245 .14027 1 —0.72 .530672
5 432323 281133 .13609 1 1.28 456972
6 493665 .266285 131892 0 4.28 .384375
7 499694 .304251 132775 0 3.28 451202
8 475151 .310349 134564 1 1.28 479622
9 452462 272325 134529 1 2.28 424845

10 494376 267928 131916 1 4.28 38718

11 53811 .256469 128895 1 7.28 .336105
12 .582101 .246531 125935 0 11.28 .290151
13 .567471 .289182 12775 0 10.28 377743
14 .550545 292739 12902 1 8.28 395431
15 56157 244344 127134 0 9.28 297769
16 .550534 .292963 129026 0 8.28 39583

17 .53186 .296999 130414 0 6.28 415776
18 .500026 .304671 132764 0 3.28 451696
19 447904 317548 136533 1 —0.72 512241
20 401366 .285682 .138059 1 0.28 489128
81 49193 .262163 131824 0 4.28 377202
82 499709 .304271 132775 1 3.28 451225
83 491929 262159 131824 0 4.28 377196

84 499709 304271 132775 1 3.28 451225
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Table 4.2 (continued)

Year Probab TaxL TaxR Govt? M Avergs
85 491929 .262159 131824 1 4.28 377196
86 .525074 261453 129846 1 6.28 35421
87 .561765 .251186 127303 0 9.28 311222
88 .550537 .292902 129024 1 8.28 395721
89 .561568 24431 127134 0 9.28 297702
90 .550534 292964 129026 1 8.28 395831
91 .561568 .244298 127133 0 9.28 297676
92 .550534 .292964 129026 0 8.28 .395831
93 .53186 .296999 130414 0 6.28 415776
94 .500026 304671 132764 1 3.28 451696
95 4919 .26209 131822 0 4.28 377075
96 499709 304271 132775 1 3.28 451225
97 491929 .262159 131824 0 4.28 377196
98 499709 304271 132775 1 3.28 451225
99 491929 262159 131824 1 4.28 377195

100 .525074 .261453 129846 0 6.28 35421

a. 0 = Right victory; 1 = Left victory.

models such as this one, but the apparent regularity of Figure 4.2 is just a
matter of luck. It is important to note that Figures 4.1 and 4.2 were gener-
ated by exactly the same “seed”; only the realization of the random element
(who wins each particular election) differs. And of course the history of who
holds power determines the distribution of the stochastic element in the next
period.

Finally, it should be noted that there is a built-in stabilizer in the present
model: the longer the polity experience low tax rates in the immediate past, the
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Figure 4.1 Long-term electoral cycles in the Hirschman model

more their preferences tilt toward the public good, and inversely. Despite this
stabilizer, quite dramatic long-run political cycles are inherent in the process.

The reader is referred to Roemer (1995) for a further discussion of the genesis
of cycles in this model. There it is shown that cycles are due precisely to the
stochastic element inherent in the elections.
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Figure 4.2 Regular long-term electoral cycles in the Hirschman model
4.5 Conclusion

We have shown that although the Wittman model is, in most cases, too com-
plex to permit solving for the political equilibrium by hand, solutions are easily
computable by machine. It is usually not easy to do analytical comparative stat-
ics with Wittman equilibrium, because of the complexity of the equations that
determine it, but one can often do empirical comparative statics by simulation.
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Endogenous Parties: The Unidimensional Case

5.1 Introduction

In the applications of Chapter 4, the preferences of parties are exogenously
given. We can think of those models as analogous to the Arrow-Debreu gen-
eral equilibrium model, where firms are taken as given. A complete explanation
of the politico-economy should, however, attempt to derive what parties come
into being from more primitive assumptions about citizen preferences and en-
dowments. In this chapter we begin the study of deriving parties endogenously.

We shall not, however, attempt to endogenize “all the way down”; in partic-
ular, we shall assume that only two parties will form. A more complete theory
would endogenize the number of parties as well. We know that the number of
parties is influenced by political institutions, laid out in the constitution (for
example, Duverger’s Law and single-member districts). We shall not proceed,
however, to the deeper level of taking the constitution as an exogenous datum
and deriving the number of parties from there. Clearly, if we wished to leave
open the number of parties, we would have to have a theory of what politi-
cal equilibrium looks like if there are n parties, for a new entrant into the party
formation process would have to compute the political equilibrium that would
result were it to enter. The natural approach would be to model the party for-
mation process as Nash, in the sense that a stable set of parties is one in which
no party wants to fold, given the existence of the others, and no new party has
an incentive to form.

In this chapter we propose two theories of endogenous parties, both of which
model a conception of perfectly representative democracy. Such a democracy is
one in which:

(1) Every citizen belongs to one and only one party.
(2) Each party member receives “equal weight” in the determination of the
party’s preferences.

90
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The phrase “equal weight” is vague, and the two theories referred to make that
phrase concrete in different ways.

A perfectly representative democracy is clearly an ideal, and reality departs
from that ideal most obviously because of the role of private contributions to
parties. Presumably, large contributors have more influence on a party’s prefer-
ences than do other citizens. We shall propose a general model of endogenous
parties when there is party financing in section 13.6.

5.2 Average-Member Nash Equilibrium !

Our first model is based upon the idea that each party represents its “aver-
age member.” We shall present the model using a specific example and then
calculate equilibria for that example.

Suppose that h is a type’s income, F is the distribution of income on H =
(h, ], and all citizens have preferences over income and public good, u(x, G) =
x + kG'/2, As usual, the policy is a proportional income tax, ¢, and so v(t, h) =
(1 — t)h + ku'/?t1/2. As we have calculated, if t! > 2 then

Q' ) ={h<h', )},

where h(!, 2) = k It/ (V11 + V/12).

We now suppose that every citizen belongs to one party. Suppose party 1’s
members are those citizens with & < h* and party 2’s members are those citizens
with h > h*, for some “separating” type h*. Further suppose that the party’s
preferences are those of the average type among its members. Thus define

(5 1) hl _ ‘/hh hdF 2 fhz* hdF
'  FE(h) 1 —Fh*)’

Then vi(t) = v(t, h'), fori = 1, 2.2 Now let (', 7*) be the Wittman equilibrium
for the game so defined, and let h(t',7%) be the type who is indifferent between
' and 7°. Suppose it is the case that h(7', 7°) > h*. Then some members of
party 2 will vote for party 1 (that is, those / in the interval (h*, h(t',7%))). This

1. This application is based on joint work with Ignacio Ortuno-Ortin. See Ortufio-Ortin and
Roemer (1998).
2. A variant of (5.1) is to define v/(¢) as the average of the utility functions of party i’s members:

Vi) = f;* v(t, BYdE(h).
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cannot be a stable situation. A stable situation—an equilibrium in the process
of party formation—occurs precisely when h* = h(t', 7). Only if this is so will
every member of each party vote for her party in the election.

Formally, we define:

Definition 5.1 An average-member Nash equilibrium (AMNE) is a triple
(h*, i ?2) such that:

(1) v!(t) and v*(t) are defined by (5.1),

(2) (', %) is the Wittman equilibrium of the political game,

(3) h* = h(T', D).

The idea here—that malcontents “vote with their feet” by defecting to the other
party—follows Caplin and Nalebuff (1997), and Baron (1993) first uses it in
the context of political parties.

To simulate a version of this model, we choose F to be a Burr-Singh-Maddala
distribution, a probability measure with three degrees of freedom, whose den-
sity function is

adyh’~!

ho,d,y) = ———F.
fl#se,8,y) (1 + ahd)r+l

(The reason for this choice will be explained later.) The formulae for the mean
(), median (m), and Gini coefficient are

T re-f)

L(y)al/?

1/8
2y —1
m:( ) , and
o

T (2y —3)
reyr(y -1y’

Gini=1—

where I' is the Euler gamma function. We define r with the error-distribution
model of uncertainty:

_Fh(t, ) + 5~ 3

a(th, t?) 28
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Thus an AMNE is defined by the three equations

ATl _; _
ﬁ(tl, l‘z) =0,

M )

3 t,1)=0,

W =h(', 1),

where we understand that k! and h? are defined by (5.1).

Table 5.1 presents a series of AMNEs where k = 4.5 and 8 = 0.20. Each row of
the table is an AMNE for a different choice of the parameters («, 8, ). Indeed,
we have chosen a series of values of («, 8, ¥) to maintain (u, m) = (40, 30),
but to vary the Gini coefficient: this is possible because we are using a three-
parameter family of density functions.® The columns of the table are self-
explanatory; P denotes the expected tax rate, 7t + (1 — )t

We now motivate this simulation. In the political-economy literature, there
is a popular view that, as the skewness of the income distribution, measured as
the ratio p/m, increases, tax rates should increase. (For statements of this view,
see Meltzer and Richard 1983 and Persson and Tabellini 1994.) This conclusion
is based on the Downs model of political equilibrium, that the equilibrium tax
rate will be the ideal tax rate of the median voter. With the voter preferences
given by the utility function of the present section, Downs equilibrium consists
in both parties proposing t* = (k?/4)(ju/m?), so if ju is constant while m
decreases (thus increasing skewness), the equilibrium tax rate will increase.
But Table 5.1 shows that, in AMNE, this conclusion is in general false. For
the table displays a sequence of economies with constant skewness in which
expected tax rates decrease (read the table from the bottom to the top). Since
the equilibrium is continuous in the parameters (, 8, y), we can now perturb
those parameters slightly to produce a sequence of economies with constant
mean and increasing median in which the expected tax rate (still) decreases.

Thus one of the most well known items of conventional wisdom in the
political economy of growth ceases to hold when we move from Downs to
Wittman politics. Exhibiting this phenomenon required a three-parameter

3. Recall that mean household income in the United States in 1990 was approximately $40,000,
and median income was approximately $30,000.



94 5 | Endogenous Parties

Table 5.1 Wittman equilibria, endogenous parties

u m Gini h* t! 12 b4 1P

40.0 30.0  0.434653 28.75  0.383653  0.139902  0.443255  0.247
40.0 30.0  0.444351 28.75  0.408851  0.138002  0.428176  0.253
40.0 30.0  0.449082 27.75  0.424958  0.137461  0.418763  0.257
40.0 30.0 0.451864 27.75  0.433305  0.13672 0.415342  0.259
40.0 30.0  0.453692 27.25  0.442597  0.136976  0.409473  0.262
40.0 30.0  0.454984 27.25  0.446924  0.136637  0.407854  0.263
40.0 30.0  0.455945 27.25  0.450236  0.136385  0.406638  0.264
40.0 30.0 0.456688 27.25  0.452854  0.136191  0.405691  0.264
40.0 30.0  0.457279 27.25  0.454974  0.136037  0.404932  0.265

40.0 30.0 0.45776 27.25  0.456725  0.135912  0.404311  0.265

Note:. The values of h* are accurate to 0.25.

family of probability distributions—two to hold p and m constant, and a third
to force variation in the Wittman equilibrium.

More generally, we can say this is a consequence of the fact that Downs
equilibrium depends only on the preferences of the “median voter,” while
Wittman equilibrum depends more intimately on the distribution of voter
preferences, as we have already noted.

5.3 Condorcet-Nash Equilibrium

The concept of AMNE can be criticized because the stipulation of a party’s
preferences as the preferences of its average member is ad hoc. What intraparty
political process determines this outcome? No justification has been provided.
The equilibrium concept of the present section rectifies this inadequacy by
specifying a process of internal party politics which determines the party’s
preferences.

If the present section improves on the preceding section, why have I pre-
sented the idea of average-member Nash equilibrium? Because the equilibrium
concept of this section only works when the policy space is unidimensional,
whereas the AMNE idea works even with multidimensional issue spaces, as we
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show in Chapter 13. Here again is an illustration of the principle that “no tool
works well for all jobs,” and so it is advisable to fashion several tools.

Indeed the reader may have wondered why we defined the party’s preferences
in section 5.2 by an averaging process rather than by a median process. The an-
swer is that choosing the median player as the party’s representative only works
when policy space is unidimensional, but we can average utility functions over
a party ’s members regardless of the dimensionality of the issue space.

We proceed to the definition of Condorcet-Nash equilibrium (CNE). Here
we adapt the notion of the “citizen-candidate,” introduced by Osborne and
Slivinski (1996) and Besley and Coate (1997). (Some differences between our
and their approach will be remarked upon below.) First, there will be a sep-
arating type, h*, as in section 5.2, that partitions the set of types into two
groups, which shall constitute, in equilibrium, two parties. Instead of deter-
mining the parties’ preferences by the averaging process, however, we imagine
that coalitions of party members propose specific party members as candidates.
Ifa particular individual is chosen to be the candidate, then that individual uses
his own preferences in the interparty competition. Thus after each party has
chosen a citizen-candidate, those two individuals (types) arrive at a Wittman
equilibrium, where each maximizes her own expected utility.

Suppose the candidates of parties 1 and 2 are of types h' and h?, respectively.
When will such a choice of candidates be “in equilibrium”? When no majority
coalition in party 1 (that is, a coalition comprising a majority of party 1’s
members) would prefer to substitute an alternative member type for h', given
that party 2’s candidate is of type h?, and when the analogous statement holds
for party 2. Thus the choice of candidates is “Condorcet” within each party,
while the equilibrium in the interparty competition is Nash.

We proceed to write down a set of equations which characterize such an equi-
librium. Let v(¢, k) be the utility function of types H on the (unidimensional)
policy space T. We shall assume, as well, that H is unidimensional, and that the
ideal points of types h are monotonic in h.* Then we write the payoff function
of Mr. h, should he be the party’s candidate, as

T(tY 2 h) = (), 2)v(eh, h) + (1 — 7 (L 2)v(E?, h).

4. The assumption that H is unidimensional is not necessary, but it simplifies the presentation.
We can carry out the entire construction working with ideal points, and not with types, but the
notation would add another layer of complexity to the presentation.
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If m' and m? are the citizen-candidates of the two parties, then, at any Wittman
equilibrium of the game so defined (that is, a Nash equilibrium where the
players have payoff functions I1(-, m') and I1(-, m?)), there are differentiable
functions t'(h!, h?) and t*(h', h*) which describe what the equilibrium would
be as we vary the pair (h!, %) in a neighborhood of (m!, m?). This is a straight-
forward implication of the implicit function theorem. Thus the functions ¢! (-)
and #2(-) are defined implicitly by the equations

(52) ATI(tL, t% hYH —o
' ar! o
ATI(e!, t%5 1)

(53) o

0,
in some neighborhood of (h', h?) in H x H.

Now let i! and h? be citizen-candidates who emerge and let i* be the type that
separates the set of types into the two parties (recalling that H is an interval).
Let t! and 2 be the equilibrium policies. We must have

(5.4) vt h*) = v(t? h"),

which simply says that h* is indifferent between the two policies.
We next define h'" and h** as the median types of the two parties, that is, by
the equations

(55 F(h") =3P,
and
(5.6)  F(h¥)—F(h*) = 11— F(h").

These equations use the fact that party 1 consists of {h < h*} and party 2 of
{h > h*}.

We now come to the most delicate issue, of characterizing the fact that Kl
must be a Condorcet winner for the choice of party 1’s citizen-candidate, given
that party 2 has chosen that 42, and that h? is a Condorcet winner for the choice
of party 2’s citizen-candidate, given that party 1 has chosen that h!. We shall
capture this by saying that it will be the case that exactly one-half of party 1’s
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members would prefer to replace h' with a larger type, and exactly one-half
of party 1’s members would prefer to replace h' with a smaller type. This will
happen only if the median type in party 1, namely h'*, does not want to replace
h! with either a larger or a smaller type: that is, Mr. h! is the ideal type to
represent the party, as far as Ms. h'" is concerned. This we write as the first-
order condition:

%[n(t%hl, ), 2(hY, BA))v(e (B, 1), B
(5.7)

+ (1 — (¢ (W', 1), t2(h", )Y B, B )] = 0.

Equation (5.7) says that the expected utility of h'" at the Wittman equilibrium
determined by the choice of party candidates (h!, h?) is at a local maximum,
as we vary the choice of party 1’s candidate (h'). Note that we must write ¢!
and 2 as functions of the two candidate types in order to write the statement
properly, for h'" must think about the consequences, in terms of equilibrium
policies, of varying the choice of his party’s candidate.

Equation (5.7) is a necessary condition for the statement “types in party 1
who are smaller than h'" desire to decrease the type that represents party 1,
and types who are larger than h'" in party 1 desire to increase the type that
represents party 1”—and so h! will be a Condorcet winner, in the sense that
no majority coalition in party 1 will be able to agree on a substitute for him.
We should, of course, check that this statement is true once we have located a
candidate solution to our problem.

In like manner, h", the median citizen in party 2, must be happy with the
choice of h? as his party’s representative, in the precise sense that

%[ﬂ(tl(hl, 1), (0 ) (' 1), B
(5.8)

+ (1 — (" (W', 1), 20, )W, 1), )] = 0.

Let us now count equations. Equations (5.2)—(5.8) constitute seven equa-
tions in seven unknowns (¢!, 2, k', h?, h'", h*", h*). This looks good. The only
remaining problem is that we do not know the implicit functions t(-) and t2(-)
thatappear in equations (5.7) and (5.8). We work our way around this problem
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as follows (this is a standard method for solving this kind of problem). First,
write down equation (5.2) and (5.3) explicitly:

8_7r 1ogly g2 By @ 131y
(5.2) (B = () 7 ) =0,
6530 =@ 1) — vt ) + (=1 @ 1) =0
. o ’ or '

Next, viewing ¢! and t? in the above equations as functions of (h!, h?)—these
are the defining equations for those implicit functions—we differentiate (5.2)
and (5.3) with respect to h'. We record here only the first of these differentia-
tions:

(8271 at! 2mr  9t?

1 11 2 11
Wﬁ*mﬁ> (e, B — v, B +

o (ov , ., 0th B
— ="\ Y — + =", —
ot! <8t( )ah1+8h( )

v , ot v,
5.9 ey — — T,
(5.9a) 8t(t h)ah1 8h(t hy )+

(an atl 9w at?

v
—— —— ) — (L, K
ot okt + at? ahl) at( )+

*v at! 9%y
— (@, B — L hh ) =o.
(” TEAE TR PR

Note that the expression (5.9a) is linear in the terms dt'/dh! and at%/9h!.
When we differentiate (5.3) w.r.t. h!, we likewise get an expression—call it
equation (5.9b)—which is linear in 9¢!/dh' and dt>/0h'. We can solve these
two linear equations, (5.9a) and (5.9b), simultaneously (using the “Linear-
Solve” command in Mathematica) for the unknown expressions dt!/dh! and
at?/oh'.

In like manner, we now differentiate (5.2) and (5.3) w.r.t. h%; this gives us
two (long) equations which are linear in the unknown expressions dt!/3h?
and 0t?/0h?; we solve these linear equations for dt!/dh* and 9¢>/0h?.
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We now have expressions for the four derivatives of the implicit functions
t1(-) and t2(-) entirely in terms of the primitives of the model, the derivatives
of the functions 7 and v.

The next step is to expand equations (5.7) and (5.8)—that is, to write out
those equations with all their implicit derivatives 9¢!/dh?, and so on. We now
substitute the four explicit expressions we have for the implicit derivatives of
t! and #? into these expanded equations. We finally can replace ¢! (h!, h?) with
t!, wherever it appears, and t>(h', h?), wherever it appears, with #2.

The new equations (5.7) and (5.8) are now quite complicated expressions,
but they no longer involve any explicit reference to the implicit functions. They
are equations in the various derivatives of the functions 7 and v. Hence we can
in principle solve these seven equations for the seven unknowns.

To compute an actual solution, I calibrated the model as follows. Let T =
H = [0, 00), and let v be Euclidean, v(¢, h) = —%(t — h)?. For the Euclidean
utility function, the set of types who prefer ¢! to t2, for t! < t2, is Q (¢!, t?) =
{h < (t' + t?)/2}. 1 use the error-distribution model of uncertainty, and so

() 0
2p

n(th t?) = , for t' < ¢2.
I chose F to be the lognormal distribution with mean 40 and median 30—again
an attempt to represent the U.S. distribution of income. I chose § = .2. This
completely specifies the model.

We solved for the Condorcet-Nash equilibrium:

(', 2, W 2 RY RE ) = (27.34, 33.43, 21.98, 43.19, 24.91, 36.72, 30.39).

Thus the “left” party is represented by a citizen with income $21,980, who
lies at the 14th centile of the income distribution, while the “right” party is
represented by a citizen with income $43,190, who lies at the 90th centile of the
income distribution. The equilibrium policies are the ideal policies of citizens
whose incomes are $27,340 and $33,430. The probability of “left” victory is .54.
The left party consists of all citizens with incomes smaller than $30,390, who
make up 51.18% of the population.

Itis interesting to note how the median party member abdicates to the radicals
in this equilibrium. Given that the right party has chosen a citizen-candidate
with income $43,000, the decisive “median voter” in the left party, who has
income $24,900 (hl*), chooses a candidate for the left party who has income
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less than his own—namely, h! = $21, 980. Similarly, the decisive median type
in the right party, who has income $36,720 (hz*), chooses a citizen-candidate
for her party who has income more than her own. Thus it is in the interest of
the decisive members of the two parties not to choose themselves as candidates,
but to abdicate to voters more radical than they.

The intuition behind why the median types abdicate to the radicals is as
follows. Of course Ms. h'" would prefer to offer her best response—call it f—
to t"; that would give her a higher expected utility than the the pair (t'", £>).
The problem is that t* would not be the best response of h? to 7, which is to
say, (%, t*°) would not be a Wittman equilibrium of the game played between
h'" and k2. When two types play the Wittman game, the equilibrium consists in
each of them compromising to a policy between his ideal point and the median
voter’s ideal point. The median member of each party, if he were the party’s
candidate, would like to “play tough,” thus compromising less than otherwise.
Choosing a more radical candidate than oneself is the only way to play tough
in this game. Put another way, the Wittman game is evidently one in which a
candidate would like to misrepresent his type: the mechanism for doing so is
to choose a candidate of a different type than one’s own.

We thus see that in a perfectly representative democracy, modeled a la
Condorcet-Nash, the two parties would have preferences of citizens at the
opposite far ends of the income distribution, but that, nevertheless, the equi-
librium policies would each be not too far from the median voter’s ideal policy,
which is t = 30.

We also calculated the average-member Nash equilibrium for the environ-
ment of this section; denoting the equilibrium policies by (¢!, £2), the party
representatives by (h!, h?), and the h* as the type defining the membership in
the two parties, we found:

(%, 12, h', W2, h*) = (28.13, 34.13, 24.78, 31.13, 58.70),

and the probability of Left victory was .628. Although the equilibrium policies
here look similar to the ones found for the Condorcet-Nash equilibrium, the
party structure is quite different. Note the right party is much smaller here than
in the Condorcet-Nash equilibrium (h* here is much larger). Furthermore, the
probability of left victory here is (consequently) significantly larger. Finally,
the party representatives here are less polarized than in the Condorcet-Nash
equilibrium. We are not prepared to make general statements comparing these



5.4 | Conclusion 101

two equilibrium concepts, but it does appear as if they may well, in general,
deliver fairly different results.

We finally return to the promised remark about the citizen-candidate models
of Osborne-Slivinski and Besley-Coate. In those models, there are no parties;
rather, each citizen decides whether he/she should announce as a candidate
(there is a personal cost to running in the election). Furthermore, candidates
cannot commit to policies, as they are assumed to be able to do in the models
of this book, and so it is simply supposed that voters know that a candidate,
if elected, will implement his/her ideal policy. The authors are then able to
derive equilibria in which a small number of citizens have chosen to stand in
the election.

The virtue of the model is that it provides a theory of endogenous
candidates—even without any limitation on the number of candidates that
enter. But the two assumptions which make the analysis tractable—that there
are no parties, and that candidates cannot commit to policies—are both histor-
ically unrealistic. It is, indeed, the existence of parties that makes commitment
possible, for the party lives on after the candidate has served her term, and the
voters will presumably punish it if the officeholder has clearly failed to imple-
menta policy on which she ran. Parties are long-lived actors, unlike candidates,
and for them reputation matters.

5.4 Conclusion

We have presented two models of endogenous parties for an ideal we have
called a perfectly representative democracy. These models are “complete” in the
sense that the Downs model is complete: they derive the outcome of political
competition from knowledge only of voter preferences. We showed that our
complete model of political competition is importantly different from the
Downs model, in the sense that at least one significant conclusion concerning
the political economy of growth that holds with the Downs model fails to
hold in our model (the putative positive relationship between skewness in the
income distribution and the rate of taxation).

Our second model modifies the citizen-candidate approach, of recent vin-
tage, to an environment with parties. We find, in an example, that parties
emerge as highly polarized in their preferences. In particular, although the me-
dian type in each party is decisive in selecting the party’s candidate, each selects
candidates to represent the party who are more radical than they. We called
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this abdication to the radicals. Here is a testable hypothesis of the Condorcet-
Nash model: does a party in a country where private campaign financing is not
prevalent (hence approximating “perfectly representative democracy”) tend to
choose a candidate with preferences that are more radical than the preferences
of the median type that votes for it? There is, indeed, an empirical regularity
claimed, at least for multiparty systems, the “systematic tendency for parties in
multi-party systems to be more extreme than their own electorates” (Iversen
1994). It would be incautious to claim this as evidence, however, for the em-
pirical accuracy of our model.
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Political Competition over Several Issues:
The Case of Certainty

6.1 Introduction

This chapter weakens just one premise of the models in Chapter 1: we now
assume that the policy space T is a compact, convex set in R"—that is, there
are n issues where n > 1. We will study the existence question for Downs and
Wittman equilibria in the case of certainty. The simple answer is that these
equilibria fail to exist—except in singular (extraordinary) cases.

6.2 The Downs Model

To repeat, there are two parties or candidates whose payoff functions are
given by

', ) = n(th, t%)
(Y 2 =1 — n(th, ),

where 7 is defined in (1.5). The set of traits is H, the distribution of traits
is given by F, and the voters’ preferences on T are represented by functions
v(wh): T — R.

We continue to assume that Al and A2 hold, and we shall now also generally
suppose differentiability (A8).

Define the gradient Vv as the vector of partial derivatives with respect to the
policy dimensions

av av
Vv={—j,...,— ),
ot at,

where a typical policy is t = (¢}, ..., t,).

>'n

103
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We shall further stipulate a nonsingularity condition:
A10 (VteT)(Vd#0,deR?), F{h|Vv(t,h)-d=0})=0.
Let us interpret A10 in the case where n = 2. It says that
/5]
is a null set: that is, the set of types whose indifference curves are tangent at

a given point ¢ € T is a null set. (For the slope of /’s indifference curve at
t=(t,1,) s

81/(', h) 8V(') h)
at, at,

evaluated at (7, t,).) As we shall see later, this condition will almost always be
true in applications.

For the rest of this section, we will assume # = 2, for presentational simplicity.
The results generalize in a straightforward manner to n > 2.

Given a point (¢, t,) € T, consider the one-dimensional functions v(-, t,; h)
with ¢, and h fixed. These functions inherit the single-peakedness of v in their
argument #,: define f,(t,, h) to be the ideal point of v(, t,; h). Formally, let
T\(t,) ={teR|(t,t) € T}, and T,(t,) = {t e R | (£}, t) € T}. Define

t,(t,, h) = arg max v(t, t,; h).
teTi(r2)

Now define t{'(t,) to be the “median policy” associated with these functions:
t](t,) is the number ¢* for which

E({h|t(ty h) <t} = 3.
Holding ¢, fixed, t]'(t,) is the one-dimensional policy such that exactly half the
population has its ideal (one-dimensional) policy at that value or less.

Similarly, fix f;, and define

t,(t, h) =arg max v(t),t; h)
teT(t)
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and define £5'(#,) as that value t* such that
F({h| ty(r, ) <t™}) = 3.
Now define a mapping ® : T — T by

(6.1) D (1), 1,) = (1 (1), 15 (1)).

Since T is compact and convex and & is continuous, by Brouwer’s fixed-point
theorem, ® has at least one fixed point." Denote the set of ®’s fixed points by
I". We have:

Proposition 6.1 Assume Al, A2. Let (t', t*) be an equilibrium of the Downs
game with certainty. Then t',t> € T,

Note: t' and t* are policies in T. We write t! = (¢{, 1), t* = (t}, £3). Subscripts
refer to components of policies; superscripts to policies.

Proof:

1.1ft! 5 t2, then each of {t!, £} must receive exactly one-half the vote; that is,
E({h| v(t', h) > v(t%, )}) = 1.

If t' = ¢, then obviously each party receives one-half the vote.

2.Lett! = (t], 1)), 12 = (1}, t}). Suppose t' ¢ '—sayt] # t{(t}). Thenif party
2 plays (t/(1)), t;) it defeats party 1 for sure. For a majority prefer (tj(5;), t3)
to (t{, t;)—just note that this is a single-issue comparison, and #;(t;) is the
median ideal policy at t, = t;. Therefore party 2 should deviate from ¢, and
(¢, t?) is not a Downs equilibrium. =

Proposition 6.2 Let T = A x B, where A C R, B C R. If the functions v(-, h)
are separable® in t, and t,, then T is a singleton.

(Note: We say that T is a rectangle in this case; its graph is a rectangle in R%.)

1. A fixed point of & is a policy (t1, t,) such that t; = #{(f;) and t, = ] (1;).
2. That v is separable in #; and #, means there are functions w; and w, such that v(t;, t, h) =
wi(ti, h) + wa(ta, h).
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Proof:
Denote v(t, t,, h) = w,(t;, h) + w(t,, h). We have

ti(t,) = arg max w,(t;) = arg max w,(t,),
neTi(t) HeA

which is independent of t,; thus we may denote #]'(t,) = t{, a constant. Simi-

larly, 5 (¢,) is independent of #; thus £ (¢,) = t;. Therefore the function @ isa

constant function and has a unique fixed point—t* = (¢], t). =

Thus I' = {¢*} in this case.

Corollary6.1 IfT = A x B, andv isseparableint, and t,, then the only possible
Downs equilibrium is (t*, t*).

Proof:
Immediate from Propositions 6.1 and 6.2. =

Example 6.1 The standard example of two-dimensional preferences are the
Euclidean preferences

v(t, tya, b) = —1(t, —a)* — 1(t, — b)".

Type (a, b)’s utility is decreasing in the distance of the policy to his ideal point,
(a, b). Euclidean preferences are separable. It follows that the only candidate
for a Downs equilibrium in the Euclidean model is (t*, £*).

In words, t*, in the separable case, can be described as follows. Let ¢ be the
median ideal policy (in R) of the types whose utility functions are w, (¢;, h).
Let t5 be the median ideal policy (in R) of types whose utility functions
are w,(t,, h). (See note 2.) Then t* = (tf, tJ'). Thus t* is the pair of “one-
dimensional” median ideal policies. When v is not separable, there is no such
simple description: rather, we must resort to fixed-point language.

We now prove our first result that says that Downsian equilibrium almost
never exists in multidimensional issue space models.

Theorem 6.1 Suppose Al, A2, A8, and A10. Let t* € T, suppose t* is interior in
T, and suppose (t*, t*) is a Downs equilibrium. Then

(6.2) (Vd eR",d#0) F({h|Vv(t',h)-d>0}) =1
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Recall that Vv(t, h) - d is the directional derivative of v(-, 1) in the direction
d, at t. Condition (6.2) says that at t*, moving in any direction in policy space,
exactly half the population will experience an increase in utility. Clearly this is
singular condition. We shall examine it in an example below.

Proof of Theorem 6.1:
1. Suppose there is a direction d # 0 such that

F({h|V(v(t*,h) - d > 0}) > 1.

Then for small § > 0, the set of k& such that

v(t* + 8d, h) — v(t*, h)
>

0
)

is a majority coalition. (We know it is feasible to move in any direction because
t*isinteriorin T.) Therefore t* 4 8d would defeat t*, contradicting the premise
that (t*, t*) is a Downs equilibrium.

2. Therefore for all d # 0,
F({h| Vv(t*, h) -d > 0}) < 3.
Suppose there is a d # 0 such that
F({h| Vv(t*, h) -d > 0}) < 1.
Then by A10,
F({h | Vv(t*, h) - d < 0}) > 1,
from which it follows that

F({h| Vv(t*, h) - (=d) > 0}) > 1,

contradicting paragraph 1.
3. It therefore follows that d # 0 implies

F({h | Vv(t*, h)-d>0})=1. =

The first version of Theorem 6.1 is due to Plott (1967).



108 6 | Competition over Several Issues

Example 6.2 Assume again Euclidean preferences
V(tp t,; a, b) = _%(tl - a)z - %(tz - b)z

where (a, b) € H. Let F be equivalent to Lebesgue measure on H. First we
compute whether A10 holds. We have

Vv(t, tyya,b) =(a—t,b—t,).
Thus Vv(%; a, b) - d = 0 means
(6.3) (a—t)d, +(b—1,)d, =0

The set of types (g, b) for which (6.3) holds is a line in the (a, b) plane. Hence
it has Lebesgue measure zero and therefore F-measure zero.

Consequently the axioms of Theorem 6.1 apply. Condition (6.2) says that for
any (d,, d,) # (0, 0) the set of types (a, b) for which

(a—t)d, + (b —1t)d, >0
has F-measure one-half. We rewrite this condition as
(6.4) ad, + bd, > t{d, + t;d,.

Inequality (6.4) says that the set of types (a, b) that lie above the line passing
through #* and perpendicular to d comprises exactly one-half the citizens. But
since this holds for every d # 0, it says that every line through t* partitions the
citizenry into two sets of equal mass. This condition has been known for some
time (see Davis, De Groot, and Hinich 1972 and Enelow and Hinich 1983).

Theorem 6.1 is all we need in the case that v is separable, for then we know
I" is a singleton and the only possible equilibrium is (¢*, t*) where I = {¢*}.
What about the nonseparable case, where I may have more than one element?
We have

Theorem 6.2 Let Al, A2, A3, and A8 hold. If (f], ?2) is an interior Downs
equilibrium where ' # °, it is nongeneric.
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An equilibrium is nongeneric if it exists only under singular conditions. For
instance, if an equilibrium can be characterized as the solution of m indepen-
dent equations in n unknowns, where m > #, then it is nongeneric.

Proof:
1. For concreteness only, we shall assume that dim T = dim H = 2.
2. We know each party wins exactly one-half the vote at (7', 7).

3.Forany pair t!, t* € T, and for any x € R?, define the function G(x; t', t; h)
= V(tl =+ X, h) — V(tz, ]’l).
4.Letd € R?, d # 0 be arbitrary. Define the function ® by

S, d) =F((he H|G@Sd; T, T3 h) > 0)),

(6, d) = // dE(h).

GOdT =0

or

® (8, d) is the fraction of the polity who prefer ' +8dto £ Since (£, ) isa
Downs equilibrium, we know that zero is a maximum of @ in its § argument,
for every vector d # 0: otherwise, party 1 could deviate in some direction and
defeat 7 for sure. (According to step 2, (0, d) = %.)

5. By A3, F possesses a density function, f; by A8, v is differentiable. It follows
that the function & is differentiable in its argument §. Thus the fact that zero
is a maximum of ® implies:

a0
(6.5) VYdeR", d#0 3_8(0’ d)=0.

6. We now expand (6.5). For fixed (x, .7, the equation
66) Gt t3h) =0

defines a curve in H. By the implicit function theorem, there is a differentiable
function R(h;, x) such that

(6.7) h, = R(h,, x)
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for points (h,, h,) € H satistying (6.6). (Here I suppress ' and 7 as parameters
of R.) Although the situation may be more complicated than what follows, a
standard case is that

G T, t5h,hy) >0 iffhy > R(hy, x).

In this case, we can write ® as follows:

ha(h1)
68)  ®@,d) = f / F(hy, hydhydh,.
R

(h1,8d)

In (6.8), h,(h,) is the maximum value of h, such that (h;, h,) € H, for given
h;.

We can now differentiate ® w.r.t. §, using the fundamental theorem of
calculus:

%(8; d)=— /f(hl, R(hy, 6d))(V R(h,, 6d) - d)dh;,

where V, R is the vector of first partials of the function R(h;, x) w.r.t. x.
Hence condition (6.5) becomes

69 VdeR: d#£0 /f(hl, R(hy, 0))(V,R(h,, 0) - d)ydh, = 0.

Now define the vector w € R” (which depends on (?1, fz)), whose ith compo-
nent is

w; = /f(hl, R(hy, 0))(V,R(hy, 0));dh,.
Then (6.9) can be expressed:
(6100 VdeR?, d#0 w-d=0.
But this implies that
(6.11) w=0.

Note that (6.11) is a system of two equations, with parameters ' and 7.
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7. In addition, we know from Proposition 6.1 that ! #* € I. This means

(6.12a) T, =t (T})
-1 *x 71
(6.12b) b=t (T})
(6.12¢) T, =1 (D)
(6.12d) 5=t (7))

where £7(-) are the functions of equation (6.1), for i = 1, 2. Equations (6.11)
and (6.12) thus constitute six equations in four unknowns—the components
of 7' and 7. It follows that any solution of these equations is nongeneric, as
was to be shown. =

Remark As indicated in step 6, the expression of ®(8; d) as an integral may
be more complex than (6.8) but the general point remains true, that equation
(6.5) entails two first-order conditions.

Thus under reasonable assumptions (the premises of Theorem 6.2), interior
Downs equilibria do not exist in multidimensional issue-space models, except
in singular cases.

The nonexistence of Downs equilibrium is commonly known by the term
“cycling,” which simply means that there is no pair of policies each of which is a
best response to the other (that is, a Nash equilibrium in the policy competition
game). Hence at any pair (!, £2), at least one party can do better, and this leads
to a series of never-ending alternative moves by the parties—the “cycle.”

If t € T were a Condorcet winner, then (¢, f) would be a Downs equilibrium—
this statement is independent of T°s dimension. So the basic fact is that, generi-
cally, there are no interior Condorcet winners when the game has a policy space
of dimension greater than one.

Example 6.3 Here is an economic example. Let H be an interval in R , where
h is the income of a type. Suppose all types have the same utility function as in
Example 1.1 over income, x, and public good G:

u(x, G) = x + 2aG"/2.
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We assume that «? > u, where u is mean income, and pu > m, where m is
median income. The policy space is the set of affine tax schemes cx + r, where
0 < ¢ < 1. Thus the indirect utility function of type h over policies (c, r) is

V(C) T, h) = (1 — C)h —r+ Z(X(C[L + 1’)1/2,

We further assume that:

(i) 0 < ¢ <1 (marginal tax rates are positive and no greater than one);
(ii) chyy;, + r < h,;,(nO one pays more taxes than her income);  (6.13)
(iii) cu + r > 0 (total taxes are non-negative).

(Note that it follows from (i) and (ii) that cu + r < w.)
The policy space in the c-r plane is the trapezoid illustrated in Figure 6.1.

A (09 hmin)

B(1,0)

C (1’_“')

Figure 6.1 The domain of policies in Example 6.3
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Theorem 6.2 tells us that there is, generically, no interior Downs equilibrium
where the two parties play different policies. (Note that v is not separable.) We
now check whether there can be an interior Downs equilibrium where both
parties play the same policy. This requires checking the premises of Theorem
6.1. Only A10 requires checking. We have

(6.14)  Vv(e, /) = (—h+a(cu+7)"*u, —1+a(cn +7)"?).
The condition Vv(¢, 7, h) - d = 0 becomes
(6.15)  hd, = a(cu + 7" (ud, + d,) — d,.

If d, # 0, then there is a unique value of h satisfying (6.15), and so A10 is true.
If d; = 0, then the left-hand side of (6.15) is zero, and so either there are no h
satisfying (6.15), or all h satisfy (6.15). The latter happens precisely when the
right-hand side of (6.15) is zero, which occurs exactly when

(6.16) o*=ctu+T7

but since the r.h.s. of (6.16) is no larger than w, (6.16) is impossible, because
o> L.

Therefore A10 holds, and there is no interior Downs equilibrium in this
economic game.

The theorems of this chapter do not exclude the possibility that there is a
Downs equilibrium where at least one party plays a policy on the boundary of
T. Checking whether this can occur is a painstaking process. We shall study
whether there is a Downs equilibrium of the form (¢, t) where ¢ is on the
boundary of T.

We must study a number of cases, corresponding to the four segments of T’s
boundary, and the vertices of T, at which # might be located (see Figure 6.1).

Case (1) t € int OA. (“int” means “interior.”)

Here, the generic policy is of the form (0, 7), where 0 < r < h_;,. The gradient
of v for h at (0, r) is

Vv =(=h+ar u, -1+ ar /%),
Any direction d = (1, §), § € R is feasible. Now Vv - (1, §) > 0 reduces to

(6-17) h < ot/u'_l/z + 5(0”-_1/2 _ 1)
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As long as (ar~'/2 — 1) # 0, we can make the r.h.s. of (6.17) as large as we
please by suitable choice of §; consequently, the set of h satistying (6.17) can
be made as large as we please, and thus a deviation in direction (1, §) would be
attractive to either party.

Now (eer~1/2 — 1) = 0 implies that @ = r < h,,;, which is impossible, since
a? > u; so we are finished with this case.

Case (2) t € int BC.

Here, policies are of the form (1, r), for 0 > r > — . In this case, any direction
d = (—1,9), for § in R, is feasible. We have

Vv (=1L,8)=h—a(u+nr""+8(-1+a(u+r",
and so Vv - (—1, §) > 0 precisely when
6.18) h>a(u+r"2=8(=1+a(u+r""?.

We can make the r.h.s. of (6.18) arbitrarily small by suitable choice of § (and
hence guarantee that a majority of h satisfy the inequality) as long as

6.19) —l+am+r"Y2+£0.

Now (6.19) fails only when o® = p + r; but p + r < u for all admissible 7,
which again contradicts our assumption that a? > p.

Case (3) t e intAB.

On this segment, the policy takes the form t = (¢, (1 — ¢)h,;,), for0 <c < 1.
Admissible directions at t ared = (;, 8,), where (6, 6,) - (—1, —=(1/h,;,,)) > 0.
We shall limit ourselves to directions of the form (—1, §,), where —0o < §, <
i Which are admissible. In this case, Vv - (=1, 8,) > 0 reduces to

(6200  h>alcp+ (1 — )hy) 2+ 8, (e + (1 — )hyy) = 1).

We can make the r.h.s. of (6.20) arbitrarily small (and hence guarantee that a
majority of & satisfy the inequality) as long as

alcpu + (1 — c)hmin)_l/2 —1>0;
we then choose §, large and negative. This last inequality says

621) o?>cu+A—o)h

min?®
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butther.h.s. of (6.21) isno larger than u, and so (6.21) is true by our hypothesis
on«.

Case (4) t € int OC.

Here, t = (¢, —cu), for 0 < ¢ < 1. We compute that Vv = (00, 00), and so a
move in the feasible direction (0, 1) will increase every type’s utility.

We must finally check whether a Downs equilbrium could consist in each
party’s playing a vertex of T.

Case (5) t = (0, hy,

To show (¢, ) cannot be a Downs equilibrium, we shall show that a majority
of the polity prefers B = (1, 0) to t. We compute that h prefers (1, 0) to (0, h
exactly when

); this is the vertex A in Figure 6.1.

min)

622)  20(u'?—h2y4h > h
Hence a majority will prefer B to ¢ if the Lh.s. of (6.22) is greater than median
income:

2
20[(#1/2 1/ ) + hmln m,

mln

which will be true (invoke o? > ) if

(6.23) —2u' PR 4

min min - K.

Now the r.h.s. of (6.23) is negative by hypothesis, and the Lh.s. is positive,
since it is the square of (u'/? —
finished.

However, it turns out that (B, B) is a Downs equilibrium. To show this, we
will demonstrate that B is the ideal policy in T for every h < h*, where h* is a
greater than median income. Thus, a majority have B as their ideal point, and
therefore there is no profitable deviation for either party from B.

Leth*=h 1 —ap™?) + apn'/?. 1 claim that h* > m; that is,

mln) Consequently (6.23) is true, and we are

min(
(6.24)  ho (1 —au™?) +ap'?

The reader can verifty that (6.24) reduces to the inequality

m—h_\*
( mm) /’L<a2’
Iu“_hmin
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which is true, because the term in parentheses on the Lh.s. of the inequality is
less than one, and we know o? > s.

Next observe that the admissible directions of deviation at B are of the
form (—1, §), for —oo < § < h,;,. The directional derivative at (1,0) for h in
direction (—1,8) is h — au'/? — 8 + adu~"/2. Thus I’s utility increases at B in
the direction (—1, §) when

625 h>au'?+8—asp P =au?+80 —an"?).

Since 1 — apu~'/? < 0, the above inequality is true for h, for some admissible
8, if and only if it is true when 6 = h, ;. But when § = h_;,, the r.h.s. of (6.25)
is equal to h*, and hence we have shown that there is an admissible direction
at B which increases h’s utility only if h > h*. Thus B locally maximizes utility
for a strict majority of the polity. It is indeed the ideal policy for this majority,
because v is concave and T is convex.

min?

The lesson of this example is that one must pay careful attention to the
boundary of the policy space, for in economic examples, that is sometimes
where a Condorcet winner, and hence a Downs equilibrium, can be found.

6.3 The Wittman Model

When dim T > 1, nontrivial Wittman equilibria (see Definition 3.2) generi-
cally fail to exist in the case of certainty.

Theorem 6.3 Let (v, v',v*, T, H,F) bea game with certainty where v is con-
tinuously differentiable, the v' are differentiable, and F is equivalent to Lebesgue
measure. If (t', t2") is an interior Wittman equilibrium with t'" # t* and
7", 1) = %, then it is nongeneric.

Proof:

1. There are three cases.

Case (1) v'(t") > v'(#¥) and v2(+¥) > v2(t1).
Define the function W (¢!, t2) = F(Q (¢, t?)). Since v is continuously differen-
tiable, and F possesses a density, W is differentiable. Denote the n-vector of
first derivatives of W w.r.t. its ¢! coordinates by V, W and the n-vector of first
derivatives of W w.r.t. its t* coordinates by V,W.

It must be that t!” is a local maximum of W (t, tz*), for otherwise party 1
could deviate a small amount in some direction, win with probability 1, and
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therefore increase its payoff (this uses the fact that v!(¢'") > v!(¢*) and the
continuity of v!). Therefore

(6.260) VW', ¥y =0.
In like manner, 2 must be a local minimum of ¥ (¢\", ), and so
(6.27) VW', ¥y =o0.
These two equations, and the equation
*o2% 1
Tt ,t7) =3
constitute 21 + 1 equations in 2 unknowns; hence the existence of a solution
is a singularity.
2. Case (2) vi(t') =vI(#¥), fori=1,2.
We know there is no direction at t!” in which party 1 can move that will increase
both the fraction of the vote it gets and its utility; therefore the gradients of v!
and of W (-, t*") must point in opposite directions at ¢":
(6.282) Vv'(t!) = -1, VW (!, 1P,
for some non-negative number A,. In like manner, there is no direction that
party 2 can move in at t** that will increase its fraction of the vote and its utility,
and so
(6.28b)  Vv2(t¥) =1, VW (", %),
where A, is non-negative. Furthermore we have
(6.292) V(") =vI(t"), fori=1,2.
and

(629b) w(t", %) =1,

The equations (6.28) and (6.29) constitute 2n + 3 equations in 21 + 2 un-
knowns, and so any solution is nongeneric.
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Figure 6.2 Example 6.4

3. Case 3. v'(t'") > v!(#¥) and v2(+¥") = v2(+1)).
This case leads to the equations (6.26), (6.28b), (6.29b), and v2(t'") = v*(1¥),
which constitute 2#n + 2 equations in 2n 4+ 1 unknowns. =

There are, however, two kinds of case in which Wittman equilibrium does
exist. First, it is a Wittman equilibrium for both parties to play any strict
Condorcet winner (see Definition 1.2). (The easy proof is left to the reader.)
The second kind is of the form (t*, t*), but t* is not a Condorcet winner. We
illustrate this kind in the next example.

Example 6.4 A Wittman equilibrium of the form (¢*, t*).

Let T be the plane. Consult Figure 6.2. Let M C H be a majority of the polity,
and let the indifference curves through the policy O of all types in M lie above
the curve COC. (In other words, let COC be the lower envelope of the set of
indifference curves through O of all types in M. Let the indifference curve of
party 1 through O be the curve AOA, and let the indifference curve of party 2
through O be BOB. I claim (O, O) is a Wittman equilibrium. The only attractive
deviation for party 1 at (O, O) is to a policy in the cone AOA, which is its upper
contour set at O: but all types in M prefer O to any such point, and so such
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a deviation is defeated for sure. Similarly, party 2 has no attractive deviation,
and so (O, O) is a Wittman equilibrium.

Furthermore, we can easily specify the preferences of types in M so that a
point very close to O and above the curve COC defeats O, and so O is not a
Condorcet winner.

The next example illustrates a case where there exists a strict Condorcet
winner; it is (of course) a Wittman equilibrium, and indeed the only Wittman
equilibrium.

Example 6.5 Preferences are Euclidean, where type (a, b)’s utility function is
v(t, tya,b) = —1(t, —a)® — 1(t, — b)%.

We assume H is a disc in the plane with center at the origin, O, and that F is the
uniform distribution on H. Thus any diameter of H partitions the population
into two sets of equal mass. The reader should verify that (O, O) is a strict
Condorcet equilibrium.

The two parties have preferences of distinct types (a,, b;) and (a,, b,), re-
spectively.

We first dispose of the possibility that a Wittman equilibrium exists in which
one party wins with probability 1. Suppose (¢!, t?) were such an equilibrium,
and suppose ¢! wins with probability one. The citizens who prefer t! to t? are all
those types lying on t'’s side of the perpendicular bisector of the line segment
connecting t! and ¢2. (For these types, t! is closer to their ideal point than ¢
is.) Call this bisector €. If ' wins for sure, this coalition is a majority, which
means that the origin lies above £. See Figure 6.3.

If t! # (a,, b)), then party 1 can move closer to (a;, b;)—to some point
t! + A—and still preserve the fact that the perpendicular bisector of the line
segment connecting t' + A and ¢ has the origin and t! + A on its same side,
meaning party 1 should deviate. This implies that t! = (a,, b,). Consequently,
party 1 is playing its ideal point and winning for sure. This cannot be an
equilibrium as long as party 2 can choose a point that it prefers to (a;, b;)
and allows it to win with probability at least one-half.

Draw the circle C with center at the origin passing through (a,, b, ): see Figure
6.4. If party 2 plays any point on or inside this circle, it wins with probability %
or 1, respectively. Hence it must be that (a,, b,) is closer to (a,, b,) than to any
point on or inside C. This can only be true if (a,, b,) lies on the radius from
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Figure 6.3

O through (a,, b,), as illustrated in Figure 6.4. But the case that (a,, b;) and
(ay, b,) lie on the same radius of H is a singular one, which we may eliminate
from consideration.

Therefore, at any nonsingular Wittman equilibrium (¢!, t?), each party wins
with probability one-half. We now examine this possibility. Suppose 7 (¢!, t?) =
%. It therefore must be the case that the perpendicular bisector of the line
segment connecting t' and t? passes through the origin, that is, is a diameter
of H. See Figure 6.5.

We claim that only in a singular case can we have v/(t') = v/(t?) for i = 1, 2,
assuming t! # t2. For if vi(¢t') = v/(¢?) for i = 1, 2, then the ideal points of the
parties are each equidistant from ¢! and t2, which implies that they both lie
on diameter £. We disregard this singular case. Therefore, for some i, say 1,
vI(t!) > v1(t?). But then party 1 can deviate a small distance toward ¢ along
the segment ¢1#2, win for sure, and increase its payoff.

Consequently, the only possibility is that t! = t* = t*. Suppose that t* # O.
Consider the diameter ¢’ through t*, illustrated in Figure 6.6. If either party
deviates toward O along diameter ¢', it wins for sure. So such a deviation must
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Figure 6.6

decrease utility for both parties—that is, any point between t* and O must be
farther from (a;, b;) than t*, for i = 1, 2. This means that the circle with center
(a;> b;) passing through ¢* is tangent to the perpendicular of ¢’ through ¢*. But
this means that (a;, b;) lies on €', as pictured in Figure 6.6. Since this is true for
both i, we have the same singularity as before.

We have proved:

Proposition 6.3 In the Euclidean model with n = 2, where types are uniformly
distributed on a disc H, the unique Wittman equilibrium is (O,0), unless the ideal
points of both parties lie on the same diameter of H.

6.4 Conclusion

In this chapter we have shown that an interior Downs equilibrium exists only
nongenerically when dim T > 1. We have also shown that only trivial interior
Wittman equilibria exist generically in the multidimensional case: either one
party wins for sure or, if not, then both parties play the same policy. There is,
however, a difference between Downs and Wittman here: for there are examples
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of Wittman equilibria where parties do not play a Condorcet winner, and this
is not true of Downs equilibrium.

We also noted, by example, that it is not unusual for a Downs equilibrium
to exist on the boundary of the policy space: this can happen because on
the boundary, and in particular at a vertex of a polygonal (or polyhedral)
policy space, there are relatively few directions of admissible deviation. Thus
realistic problems, in which policy spaces are compact, can support Downs
equilibria. This makes the Downs tool somewhat more useful than one might
have inferred from the pessimistic theorems about the singularity of interior
equlibria.

On the other hand, in many natural problems, we should expect the equilib-
rium to be interior, if there is one. (We do not expect tax rates, for instance, to
be zero or one.) And surely most, if not all, party competition is multi-issue.
In this case, one might well worry about the fragility of the two equilibrium
concepts that have been the object of our study.

That worry is, however, still premature, because parties never operate in an
environment of certainty. The next move, then, is to introduce uncertainty
into the multidimensional model, and to investigate the existence of political
equilibrium.
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Multidimensional Issue Spaces and Uncertainty:
The Downs Model

7.1 Introduction

We have seen, in Chapter 6, that in models with multidimensional issue
spaces and party certainty about voter behavior, neither Downs nor non-
trivial Wittman equilibria typically exist. In this chapter we will show that
Downs equilibrium fails to exist when there is party uncertainty about voter
behavior, in the multidimensional framework, with the state-space and error-
distribution models of uncertainty (section 7.2).

In sections 7.3 and 7.4 we introduce the models of Coughlin (1992) and
Lindbeck and Weibull (1987), which are multidimensional-issue-space models
in which Downs equilibrium does exist. We argue, however, that the uncer-
tainty in the models is ephemeral, in the sense that it vanishes when the polity
becomes large. Finally, we show in section 7.5 that if the “probabilistic vot-
ing” feature of the Coughlin and Lindbeck-Weibull models is grafted on to
a model with party uncertainty and large polities, via our finite-type model
of uncertainty, then Downs equilibrium does exist in an interesting class of
models.

7.2 The State-Space and Error-Distribution Models of Uncertainty

Let us consider Downs equilibrium with the error-distribution model of un-
certainty. Thus T, the policy space, is multidimensional, H is the set of types,
and F is the distribution of types. We have

F(Q(t, 1) + B — 0.5

7t t) = 28

124
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Suppose there is an interior Downs equilibrium (¢, t') with t # ¢'. Ata Downs
equilibrium, we must have 7 = % Therefore F(Q (¢, t')) = % In particular, we
know

VxeT, F(Qxt)) < %
(7.1)

1
VyeT, F(Q(x,y)= 3

But (7.1) means that (¢, t') isa Downs equilibrium in the model with certainty.
It follows that we are in the case of Theorem 6.2, and under the assumptions
of that theorem, Downs equilibrium exists only in singular cases.

On the other hand, suppose (t*, t*) is an interior Downs equilibrium for
some t* € T. Then

—— F(Q(t, t*)2)ﬂ+ B—05 - %

(7.2)

¥
Vi F(Q(t*, 1)) + B — 0.5 . 1
28 2

Expression (7.2) implies that F(Q2 (¢, t*)) < % andF(Q(t%, 1)) > % and so, again,
(t*, t*) is an equilibrium of the model with certainty. Now Theorem 6.1 informs
us that this is an impossibility.

Thus under the error-distribution model of uncertainty, Downs equilibria
generically fail to exist, with multidimensional issue spaces. We summarize:

Theorem 7.1 Let Al, A2, A8, and A10 hold. Let T be multidimensional, and
let the error-distribution model of uncertainty hold. Then an interior Downs
equilibrium exists only when condition (6.2) holds.

In addition, Downs equilibria under the state-space model of uncertainty
generically fail to exist. Here we introduce the analogue of A10.

A0 (VseS)(Vie T)(Vd#0,d€R")  F,({h|Vv(f, h)-d=0})=0.
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A10’ is simply the statement of A10 for the entire family of probability
distributions {F}. Let s be distributed according to distribution G on [0, 1].
We have

Theorem 7.2 Let Al, A2, A8, and A10' hold, and suppose the state-space model
of uncertainty. Then an interior Downs equilibrium exists only in singular cases.

Proof:

1. Case (1) Suppose there is a Downs equilibrium (¢t*, t*). Then, for all
d=#£0:

(7.3) G({s |F,({h| Vv(t*,h) -d > 0}) > 1} < 1.

Inequality (7.3) says that the set of states in which a majority of voters would
prefer a policy slightly perturbed from #* in some direction d, can never be a
set with mass greater than % Failing (7.3), there is a policy t* + 8d, for some
d € R", and § € R, that defeats t* with probability greater than %

Now A10’ and (7.3) imply

(74)  Vd#0,  G(s|E({h|Vv(t*, h)-d<0}) > 1} > 1.
But (7.4) can be rewritten:

(7.5)  Vd#0,  G({s|E({h|Vv(t*, h) - (—d) > 0}) > 1}) > 1.
If the inequality in (7.3) were strict for some d, then the inequality in (7.5)
would be strict for that d, which would contradict the supposition that (t*, t*)
is a Downs equilibrium.

Therefore, (7.3) is an equation for all d # 0. This is a singular condition, as
has been discussed in Chapter 6, with reference to the similar condition (6.2)
in Theorem 6.1.

2. Case (2) There is an interior Downs equilibrium (¢!, £2), t! # ¢2.
The reader should notice that the proof of Case(1) follows the proof of Theorem

6.1. It will therefore come as no surprise that the proof of this case follows the

proof of Theorem 6.2. The details are left as an exercise for the tireless reader.
]
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7.3 The Coughlin Model

Peter Coughlin (1992) proposes a “probabilistic voting model” in which Downs
equilibrium exists for multidimensional issue spaces. In this section we present
Coughlin’s model, adapting the notation to conform with the models in this
book.

Let H be the set of types, distributed according to the probability distribution
F. Let T be a compact convex set in R". The utility function is, as usual, v(t, h),
which we now assume is non-negative, and is concave in ¢. There is a function
¢ : R, — [0, 1] with these properties:

Mo +o() =1,
(2) ¢ is continuous and increasing in x, and
(3) ¢ is concave.

Coughlin postulates that, when facing a pair of policies (!, t?), a citizen of

type h votes for ¢! with probability ¢ (:E:;Z;

individual variable are independent across citizens.
Because we are interested in large polities, we will assume (as usual) that there

). Furthermore, the draws on this

is a continuum of individuals of each type. Because the draws of the random

variable are i.i.d., and there is a continuum of citizens in each type, the fraction

v(tL,h)
v(t2,h)

of citizens of type h who vote for ! is ¢ ( ), and so the fraction of polity

who vote for t! is

Cppl L2\ _ v(t', h)
(7.6) O~ 1) = /¢ (V(tz) h)) dE(h).

Coughlin postulates that each candidate (party) desires to maximize his (ex-
pected) vote fraction. Thus, party 1 seeks to maximize ®, and party 2 to
maximize 1 — &€,

We first note:

Proposition 7.1 A Nash equilibrium of the Coughlin game is a Downs equilib-
rium, and conversely.

Proof:

1. In a Nash equilibrium of the Coughlin game each party receives one-half
the vote. For if one party received less than one-half, it could immediately
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increase its vote fraction by imitating the other party. (Notice that ¢ (1) = %,
so ®C(t, 1) = % forall t.)

2. Therefore, in a Nash equilibrium of the Coughlin game, each player wins
with probability one-half. This is a Downs equilibrium, since if either player
could increase its probability of victory (to 1) by deviating, we would not be in
Nash equilibrium of Coughlin’s game. =

We now observe:
Theorem 7.3 A Downs equilibrium of the Coughlin game exists.

Proof:
Since ¢ is concave and v is concave in t, it follows that ®€ (-, #?) is a concave
function (in ¢'). Note that

Cipl 12 — Y ALGRD) _/ (V(t2 h))
® (t,t)-/(l ¢(V(t1’h))) dF() =1= [ (o ) 4,

and so
c v(t?, h) .
— dC(t!, t)_/q)( . h))dF(h),

therefore, 1 — ®C(t!, -) is a concave function of 2. The best-reply correspon-
dences are nonempty (since T is compact). We are therefore in a situation where
all the premises needed to apply Kakutani’s fixed-point theorem hold, and so
a Nash equilibrium of the Coughlin game exists. By Proposition 7.1, this is a
Downs equilibrium. =

Thus Coughlin has proposed a model with a multidimensional issue space
in which a Downs equilibrium exists.

We must first understand that, although Coughlin presents his model as
one of “probabilistic voting,” in the continuum-of-citizens version, it is what
we call, in this book, a model with certainty. The only case in which there
is uncertainty concerning which party will win is when each policy receives
exactly one-half of the vote. In Coughlin (1992), the author often assumes a
finite polity, and so uncertainty exists. But that uncertainty is uninteresting for
us, because we are interested only in large-polity politics.

Therefore Coughlin’s model is appropriately compared with the models of
Chapter 6. The question is: why does a Downs equilibrium generically exist
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in Coughlin’s model, and generically not exist in our models in Chapter 6
(Theorems 6.1 and 6.2)? The answer lies in the introduction of probabilistic
voting at the individual level, as embodied in the function ¢.

To see the contrast, let us suppose our usual framework, in which type h votes
for policy t! over t? ifand only if v(¢', h) — v(¢?, h) > 0 (unless he is indifferent
between the policies). The fraction who vote for ¢! is

ot ) = / dF(h).

heQ(t1,12)

Letting 1, be the indicator function,' we may write
(7.7) o, tH) = /19(,1,t2)d13(h)

The essential fact is that, while ®€ is a concave function of ¢!, ® is not even
a quasi-concave function of t', in general. Therefore, Kakutani’s theorem does
not apply, and we have no a priori reason to hope that a Downs equilibrium
will exist in the game with payoff functions ® and 1 — ®. Nor, should I add, is
& continuous on the line (¢, t), while ®€ is continuous.

We demonstrate that @ is not (generally) quasi-concave with an example,
illustrated in Figure 7.1. Let T be a compact, convex set in RZ. Likewise, H C R2.
Let

v(t;, b3 hp hz) = _%(H - h1)2 - %(tz - h2)2§

that s, h prefers t! to t? if and only if the distance from ¢! to h is smaller than the
distance from t2 to h. Let the policies t2, t and ¢’ be given, as illustrated in Figure
7.1, let 7 be on the line segment 7z’ and let the lines £, £/, and £ be perpendicular
bisectors of the line segments #£2, '+, and 712, respectively. Finally, assume that
almost all of H’s mass lies in shaded half-plane, above 0.

If ® is quasi-concave, then it must be that

(7.8) @ (1, t3) > min(® (¢, t2), D(¢, t2)).

We shall show that (7.6) is false. Note that Q(t, t*) consists of all types
that lie below the line £—these are the points closer to t than to t2. This

1. See the Mathematical Appendix.
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Figure 7.1

includes a substantial part of H. Therefore ® (¢, t?) = %,

Q(t', t?) consists of all points on the same side of £’ as ¢: this also includes as

let us say. Similarly,

substantiated part of H, so we write ®(t/, %) = % Q (%, t?) consist of all points
below ¢, which includes almost no mass of H, and so & (1, t?) ~ 0; hence (7.6)
is false.

This example shows that even if F and v are nonpathological, the function
® is generally neither quasi-concave nor continuous. Thus the substitution of
the function

v(t!, h)
¢ (v(tz, h))

for the function 1,1 ,2) in the integrand of (7.7) changes the badly behaved

function ® into the well-behaved function ®°.

7.4 The Lindbeck-Weibull Model

Assar Lindbeck and Jorgen Weibull (1987) propose a model that shares this fea-
ture with Coughlin’s model: voting at the level of the individual is probabilistic,
but with a continuum of voters, the uncertainty disappears. A Downs equi-
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librium exists. Their model, however, has somewhat more micro-foundations
than Coughlin’s, as it endeavors to make precise why a voter’s behavior appears
to be probabilistic. Essentially the same model is studied by James Enelow and
Melvin Hinich (1989).

Lindbeck and Weibull propose that there be two candidates, A and B. As
usual, we have a set of types H, and a distribution of types, F. The policy space T
is of dimension #n. But now it is assumed that candidates A and B have particular
characteristics, which differentiate them, beyond the policies they propose: this
could, for example, be their positions on issues that are not focal in the election.
Because of this, each voter types receives a different utility, depending on which
candidate is elected. In particular,

v(t, Ay h) = u(t, h) +a",
(7.9)
v(t, By h) = u(t, h) + b,

where (¢, A) is the event “candidate A is elected with policy ¢.”

Now the candidates are assumed to know the function u, but they only have a
probability distribution over the pairs (a”, b"). In particular, assume that both
candidates believe that b" — a" is distributed according to a probability measure
whose distribution function is G"(-).

If the candidates propose policies t4 and ¢, then type h votes for t* when

u(t®, hy + a" > u(®, h) + b,
or when
" —a" < u(t?, h) — u(£®, h).

The candidates evaluate the probability of this event as GMu(t, h) — u(t®, h)).
Therefore the expected fraction of the vote going to candidate A is

(7.100 MW (A B = / G'(u(t*, h) — u(t®, h))dF(h).

We note, again, that if F is a continuous distribution, then OV is the exact

fraction of the vote which #* receives; only if there is a finite number of
individuals of all types will the expected vote fraction differ from the exact
vote fraction. Therefore if we continue to be interested only in large polities,
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the Lindbeck-Weibull model is what we have called a model with certainty.
Uncertainty as to the electoral outcome only exists when & = %,
is flipped to decide the victor.

We next assume that the probability distributions G" are each symmetric:
that is, for all x and h,

and a coin

(7.11)  G'(x) =1— G'(—x).

Now the expected vote share for candidate B is 1 — @V (¢4, tB), which, by
(7.11), is equal to

tﬁﬁmﬁm—mﬂmmnm

If ® is concave in 4 and 1 — ®IV is concave in ¢, then, by Kakutani’s
fixed-point theorem, a Downs equilibrium exists for this model. (Note that
Proposition 7.1 holds when we substitute “Lindbeck-Weibull” for “Coughlin”
in the statement.) Since the probabilistic distributions G" are symmetric, we
have seen, in the paragraph above, that it suffices to prove concavity of @ in
4, for the concavity of 1 — @MW in B is mathematically equivalent.

Let ¢" be the (positive) density function of G, let Vu(-, h) be the gradient
of the function u(-, k) at t, and let H (u(t, h)) be the Hessian matrix of the
function u(-, h) evaluated at ¢. If z is a (column) vector, denote its transpose by
2T,

Define the n x n matrix

", by — u(t®, hy)

= T By iy L (Tu )T 3w ),

M4, 5, h)

where g" is the derivative of g".
We have

Theorem 7.4 Suppose M(t4, t%, h) is a negative semi-definite matrix for all
(t4, t8, h), where t4, tB € T. Then there exists a Downs equilibrium in the
Lindbeck-Weibull model.

Proof:
To show that ®W is concave in 4, we show its Hessian matrix w.r.t. t* is
negative semi-definite for all vectors ¢5. Define QMW (4 By = Gh(u(t4, h) —
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u(t8, h)). It suffices to show that ®"" has a negative—semi-definite Hessian
matrix (w.r.t. t*) for all t5, evaluated at t*. The reader may compute that this
Hessian matrix is

H@"™W) = ¢ (u(t?, h) — u(t®, ) Vu(?, ) - (Vu(r®, h)T

+ g" (@, ) — u(tB, W) H (u(t?, h)).

Since g" is always positive, it is equivalent to show the negative semi-definiteness
for the matrix

¢ (u(th, h) — u(t®, hy)

A A T N
A Ty — (e, Ty P (VS )T G, 1),

But this requirement is the theorem’s premise. ®

Remark The condition that M(t4, t%; h) be n.s.d. is not a “nice” condition.
If u is concave, then H (u(t*, h)) is negative semi-definite. But the matrix
Vu(th, h) - (Vu(t, h))T is always positive semi-definite, so if the ¢" /¢" term
is positive, then the condition is delicate: it must be that the negativeness of the
H (1) matrix overwhelms the positiveness of the matrix g'/gVu - (Vu)T. See
Lindbeck and Weibull (1987, 281) for further discussion.

The negative—semi-definiteness of M (%, ¢, h) is exactly “Condition 1” of
Enelow and Hinich (1989); “condition C1” of Lindbeck and Weibull (1987) is
the unidimensional version of our condition.

When I wrote that the Lindbeck-Weibull model has micro-foundations that
the Coughlin model lacks, I meant that Coughlin assumes that an individual
votes for policy ¢4 over t? probabilistically, while Lindbeck and Weibull base
that random behavior on an unknown element of the voter’s preferences over
specific candidate characteristics. It should be noted, however, that the key
condition for the existence of a Downs equilibrium in the latter model—that
M (t4, tB, h) be negative semi-definite—is not an attractive condition, in the
sense that it involves an assumption on the pairs of objects (G", u(-, h)}. We
have no elementary (primitive) condition on voter preferences and behavior
that implies the condition in question. Nevertheless, the existence of Downs
equilibrium in Theorem 7.4 is a nonsingular event, in the sense that there is a
generic set of models where the matrix M is indeed negative semi-definite.
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7.5 Adapting the Coughlin Model to the Case of Aggregate Uncertainty

Section 7.3 and 7.4 have shown two methods for “concavifying” the payoff
functions of parties (or candidates) in the Downs political game, when T is
multidimensional. But the existence theorems which then hold are twice re-
moved from the existence theorem we would like to have: first, there is true
(aggregate) uncertainty in these models only when the polity is finite, and
second, we are mainly interested in the (realistic) case that parties have pol-
icy preferences. In this section we shall investigate whether the concavifying
methods of the earlier sections will continue to work when we introduce ag-
gregate uncertainty. (Parties with policy preferences will be introduced in the
multidimensional model in Chapter 8.)

We shall introduce aggregate uncertainty into the Coughlin model by em-
ploying the finite-type probability model of section 2.4. Upon review, the
reader will recognize that that model is exactly the Coughlin model adapted
to generate aggregate uncertainty.

Using the notation of section 2.4, (% + }—lf (x(t', 2, h'))) is the expected
fraction of voters of type k' who vote for t! over t2, where x(t, t?, h') =
v(t?, h)/v(t', h). However, the actual fraction of type k' citizens who vote for ¢!
over t2is 1/2 4 €'/2 f (x(t', t%, h')), where €' is a random variable (with mean
12).

Since there is aggregate uncertainty in the model of section 2.4, maximizing
the expected vote there and maximizing the probability of victory are different
objectives, and the rational (Downsian) candidate will maximize the latter. We
shall analyze this model in a moment. But first let us observe that, were our
parties to (mistakenly) maximize expected vote share with the probabilistic
structure of section 2.4, then a Nash equilibrium would exist.

Proposition 7.2 Given the assumptions of section 2.4, suppose party 1 maxi-
mizes its expected vote share,

w; v(t%, b
— 1 —+ —_— 5
O
and party 2 maximizes its expected vote share. If v is concave in t, then a Nash
equilibrium exists.



7.5 | Adapting the Coughlin Model 135

Proof:
To show that expected vote share is concave in t!, it suffices to show that

2
W, 2 ) = f (v(t ,h)>

v(tl, h)

is concave in t!. The gradient of ¥ w.r.t. ! is

(VDY v
_f <V(tl, h)) (V(tljh))zvv(t )h),

the Hessian of ¥ w.r.t. t! is equal to
x? x
(f"(x)m + 2f/(x)m> V(t', by - (Vv )"
x
1

v(tl, h)

—f'() H(t', hy),
where x = v(t%, h)/v(t!, h). Using the definition of f and the fact that v is

everywhere non-negative, we compute that this matrix is negative semi-definite
if and only if the matrix

(7.12)  2Vv(rY) - (V)T = () + v(2) H(v(1))

is positive semi-definite. The matrix — (v(t') + v(¢2))H (v(t')) is positive semi-
definite because H(v(t!)) is negative semi-definite (v is concave), and the
matrix Vv(t!) - (Vv(t!))T is positive semi-definite since, for any x € R”,

xVy(h) - (Vv ) xT = (Vv(!) - x)? > 0.

Therefore W is concave in t'. The symmetric properties of f assure us that W
is convex in #2, and so, by Kakutani’s fixed-point theorem, a Nash equilibrium
exists. ®

Proposition 7.2 is the analogue of Theorem 7.3. Next we introduce aggregate
uncertainty and show that concavity (more strongly, quasi-concavity) of the
probability function 7 generally does not hold.
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We shall illustrate this in a nonpathological example. Consider the following
income distribution problem. There are three types, h', h?, and h?, each con-
stituting one-third of the polity. A policy is an income distribution (x!, x, x°)
such that %xl + %xz + %x3 = 1. Thus, we may represent the policy space, T,
as two-dimensional: T = {(x,, x;) | 0 < x,, 0 < x5, x, + x; < 3}, with the un-
derstanding that x; = 3 — (x; + ;). The utility function of each type is just its
income, x;.

Let x and y be two policies. Suppose that the fraction of type 1 voters who
vote for x over y is 1/2 + (¢'/2) f (1—1) and the fraction of voters of type j
voters, for j = 2, 3, who vote for x over y is 1/2 + (62/2)][(%),]' =1, 2, where
f(x) =1 —x)/(1 + x). We assume (as in section 2.4) that the R*-valued
random variable (¢!, €2) is uniformly distributed on the non-negative quadrant
of the unit circle.

Leta' = (1/3)f (y,/x)), a*= (1/3)f (2/xy) + (1/3)f (y3/x5). Then 7w (x, y) =
Prob(a'e! + a2 > 0). Thus, referring to our analysis in section 2.4, we have

1 ifa' >0anda®>0
13) . 9) 1—%arctan(7a—?2>, ifal >0anda? <0
7.13 w(x,y) =
%arctan <_a—ﬁ’2), ifa' <0anda?>0

0 ifa' <0anda® <0

The values a' and a? are determined by the policies x and y. Fix y. Now
consider the four sets of policies (x;, x,) € T which are associated with each of
the four regions described in (7.13):

Al= (xz’x3)€T|f<yl

) )+ (3)
A= (xz,x3)er|f<y_1>>o and f &)+f<y—3)<o ,
) )+ (%)

A’ =1 (xpx;) € T|f(—

A4={(x2,x3)eT|f(i%><0 and f<y—z) +f(x—z)<o}.
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From the definition of f, we compute that these regions are:
Al={(,x) €T |x+x3<3—y, and x> yyys},
AP ={(xpx) €T %, +x<3—y, and xx; < ,03),
A ={(x,x,) €T |x,+x>3—y, and xx; > y,y;}, and

A'={(xpx) €T |x,+x>3—y, and x,0; < y,)3).

We display these four sets in Figure 7.2.
Now consider two potential policies by party 1, denoted x and x” in Figure 7.2.
Since X is on the line segment xx’, the quasi-concavity of 7 (-, y) requires that

(7.14)  7(X,y) = min(w(x, y), T(x, y)).

X3

(0,3) K X2X3 =02V

(O> 3 —)’1)

(0> 0) (3_}/1’0) (3> 0)

Figure 7.2
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But x € A? and x’ € A® imply that 7 (x, y) and 7 (x/, y) are both positive (see
(7.13)), while X € A* means that 7 (%, y) = 0. Thus (7.14) is false, and so 7 is
not quasi-concave in x.

Figure 7.2 also shows us that 7 is discontinuous at the two points P and Q.
For if we approach P from a sequence of points in A!, 7 is constantly one, while
if we approach P from a sequence of points in A%, 7 is constantly zero.

This example shows that with an entirely nonpathological model (the func-
tion v and the distribution F are well behaved), the payoff functions of the
players in the Downs game with the finite-type model of uncertainty are not
quasi-concave. Thus, the concavification of the payoff functions achieved in the
Coughlin model fails to generalize when we introduce aggregate uncertainty.

Despite the failure of quasi-concavity, we will show that Downs equilibrium
exists in a class of models of which the one studied above is an instance.

For simplicity of exposition, we continue to suppose that there are three
types, where type i constitutes fraction o’ of the citizenry. A policy is an income
distribution (x;, x,, x3) such that

(7.15) Z w'x; = 1.

Type i citizens have a strictly concave, positive, differentiable utility function
v' of income. Facing policies x and y, the fraction who vote for x is

oo (557 (i)« o (54 (753))

where (¢!, €2) is uniformly distributed on the non-negative quadrant of the
unit disc in R? and f(X) = (1 — X)/(1 + X).
We have

Proposition 7.3 Let (7, 1), where j € R®, be a non-negative solution of the
equations

i i
717 a=l0) 1,
4 (y')

(7.15) Z W' =1.

Then (y, ¥) is a Downs equilibrium of the above model.
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Proof:
We know that the probability of victory of x against y is given by (7.13), where

al = Cl)lf <_Vl(}/1)> and az = wa (VZ()/Z)) + wa <V3(y_3)) .

Vl(x1) Vz(xz) VS(-"%)

now

Suppose (¥, y) is a Nash equilibrium. Then for all policies x, we must have
(7.18)  a'+a*<0,

for (7.18) just says that the probability that x defeats y is at most % We demon-
strate this fact for the second case of (7.13). The inequality

2 —a? 1
l——arctan | — ) < —
F11 al 2

is equivalent to

which is equivalent to (7.18), since a' > 0 in this case. The reader may verify
the other cases.
Now we expand (7.18), which says

o (L =00
vi(x;) — vi(y;)

which is equivalent to

719 ) o (vi(xi)+vi(yi)) =2 <Vi(x")+Vi(yi)) )
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noting that,

vi(x) g Vi(y)
Vi(xi) + Vi()’i) Vi(xi) + Vi()’i) ’

we can write (7.19) as

1 i L
(720) 5= Do <vi(x1~) + Vi(yi)) '

Define the right-hand side of (7.20) to be the function ® (x; ). We have just
shown that (y, y) is a Downs equilibrium if and only if for all non-negative x
satisfying (7.15),

< ®(x;p).

N | —

We next note that ® is a differentiable and convex function of x. (Convexity
of @ in x follows from the fact that the reciprocal of a positive concave function
is convex.)

To show that a pair of policies (y, ) is a Downs equilibrium, it suffices to
show that y is a local minimum of the function ®(-; y). Note that ®(y; y) = %,
and employ the fact that a local minimum of a convex function on a convex
domain is a global minimum.

Thus (y, y) is a Downs equilibrium if and only if y is a local minimum of
®(:; y). Define the constraint function

gx)=1- Z a)ixi.
Then y is a local minimum of ®(-; y) iff
(7.21a) Vd#0, deR’, Vo(y;9) - d<0=Vg-d<0,
where V® is the gradient of ® (x; y) w.r.t. x. (7.21a) says that

(7.22b) V@ (y;5y) = AVg(y)
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for some A > 0, which in turn reduces to

Vi . . .
(2%);‘)))21/1()/1) =A, for all 1,

which in turn reduces to (7.17). =

Let us now apply Proposition 7.3 to the specific example we studied earlier in
this section. There v'(x;) = x;, and ' = w? = w® = },and s0 (7.17) and (7.15')
reduce to

1
4—%:)» ZJ’iZi

which together imply that y, =y, =y, =1, A = % Consequently ((1, 1, 1),
(1,1, 1)) isa Downs equilibrium of that model despite the non-quasi-concavity
of .

The proof of Proposition 7.3 has shown more than its statement claims:
namely, that any Downs equilibrium of the form (y, y) must satisfy equations
(7.15") and (7.17). We further observe that there is at most one solution for
these equations. Note that the function v/ (y,)/4v'(y,) is strictly decreasing in
yi. Thus, for given A, there is at most one solution y;(A) to (7.17), for each i.
Furthermore, {y;, (A)} are strictly decreasing in A. Therefore there is at most
one A for which the equation

Z wiyi(k) =1

holds. We may summarize: there is at most one simultaneous solution of the
equations (7.15") and (7.17), and that solution is the unique Downs equilib-
rium where both parties play the same policy.

What about the possibility of a Downs equilibrium where the parties play
different policies? This cannot occur, as we show next.

Theorem 7.5 In the above model, there is at most one Downs equilibrium. Both
parties play the policy §, where ¥ is the unique solution (7.15') and (7.17), if such
exists.
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Proof:

1. Suppose that (%, ) were a Downs equilibrium where X # y. As usual, each
party must win with probability % Therefore we have

x = argmin, @ (x; )
and
y = argmin, ®(y; %).

(This follows from the analysis given in the proof of Proposition 7.3.)

2. Therefore, there exist positive numbers A and u such that
V& (x;9) = AVg(Xx)
and
Vo5 %) = nVg (@)
which reduces to

Vi)V (R,

AN L iAo = A, for all i,
V'(x) +v'())
—AVA(xi)V (~yi) 5 =M for all 4,
V'(x) +v'(y))
which in turn imply
i 5. A i’ 5.
YD _ AV i

Vi) w V@)’
Since the function v''/v' is strictly decreasing, it follows that

A R n .
—>1=y>%, for all 4,

<1l=>y,<%, forallj,

T|> TI>

=1=j,=5, for all 1.
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If either of the first two cases of the above three cases holds, then (7.15) is
violated for one of {x, y}, a contradiction. Therefore it must be that x = j,
again a contradiction. =

Remark The condition (7.17), which may be written

d .
— log v'(y;) = 44, for all 1,
dy’

characterizes the solution to the program
m;ax Z w'log v'(y;)

s.t. Z a)iyi =1

Thus the policy parties play at Downs equilibrium solves the program
3 .
max l_[(v’(yi))“”, s.t. Z o'y =1.
yo
i=1

Actually, this product of utilities is a well-defined social-welfare function in
the present model, by which I mean the following. We may choose various
profiles of utility functions (v!, %, v°) to represent the preferences of types in
this model, but it must be the case that the ratios vi(yi) /vi(xi) are invariant
(for fixed x; and y;), for otherwise the numbers f (vi(yi) / vi(xi)) would not be
meaningful. Therefore, utility is implicitly assumed to be cardinally measurable
and ratio-scale comparable in this model, which means that each utility function
is defined up to a positive multiplicative constant; call the constant y'. Now
note that the solution of

3
y = argmax, n(yivi(yf))‘”l
i=1

is invariant as we change the (positive) numbers y’. Therefore, ]_[(vi)‘”i is
a well-defined social welfare function in our model. For clarification of this
social-choice-theoretic remark, the reader may consult Roemer (1996, chap. 1).
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Suppose v*(0) = 0 for all i. Then the solution of
3 _
max [ [/ ()"
i=1

is exactly the Nash bargaining solution of the game among the three types,
where each type has “bargaining power” proportional to its numbers and the
disagreement point entails no income for anyone. (See Roemer 1996, chap. 2,
for a discussion of the Nash bargaining solution.)

If one believes that the “fair” income distribution is characterized as the out-
come of this bargaining problem—some may, but I do not—then our theorem
displays a pleasant conclusion, that democracy, here viewed as political com-
petition a la Downs, engenders a fair outcome.

This curiosum may be contrasted with the situation in the Coughlin and
Lindbeck-Weibull models. Those authors show that the respective Downs equi-
libria in their models maximize a utilitarian social-welfare function.

7.6 Conclusion

We have shown that, with the state-space and error-distribution models of
uncertainty, (interior) Downs equilibrium generically fails to exist when the
policy space is multidimensional. Coughlin and Lindbeck-Weibull proved the
existence of a Downs equilibrium in multidimensional policy spaces for an
“income distribution” model. In their model, however, aggregate uncertainty
disappears when the polity is large. We modified the Coughlin model to endow
it with aggregate uncertainty for large polities, which required using the finite-
type model of uncertainty, and we showed that, in a (generic) class of income-
distribution models, a Downs equilibrium does exist, despite the fact that the
objective functions of the parties are not quasi-concave. The unique Downs
equilibrium of those models has both parties playing the same policy.
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Party Factions and Nash Equilibrium

8.1 Introduction

We have shown that, with two of our three models of uncertainty, Downs equi-
librium fails to exist when the issue space is multidimensional. And as we will
see in section 8.5, with multidimensional issue spaces, Wittman equilibrium
often fails to exist. Researchers have responded to the nonexistence of Nash
equilibrium in pure strategies in the multidimensional game in five ways:

* The mixed-strategy approach
* The sequential game approach
* The institutional approach

* The uncovered set approach

* The cycling approach

I shall briefly discuss each of these in turn.

It is often the case that, even if pure strategy Nash equilibria fail to exist,
mixed strategy equilibria do exist in the multidimensional game. If one adopts
the mixed strategy approach, then one must argue that, in the real world,
parties play mixed strategies—that is, flip a complex coin to decide what policy
to announce. No one seriously argues that parties literally do this, but some
game theorists argue that parties nevertheless can be viewed as playing mixed
strategies, as follows. Suppose that each party does not know for certain the
type of the other party—that is, the other party’s preferences. Each party has
only a probability distribution over the other party’s type. Each party can
compute how the other party will respond to its own policy, for every type that
it may be, and this induces a “mixed strategy”—that is, party 1 views party 2
as responding with a probability distribution over strategies, induced by the
probability distribution that party 1 has over party 2’s type. The appropriate
concept of equilibrium, in this case, is a mixed-strategy equilibrium.

145
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The problem with this approach, I think, is that it flies in the face of reality.
Parties are public institutions, which is to say their preferences are known—
at least this is a good first approximation. In my view, the mixed-strategy
approach distorts reality for the sake of achieving existence of equilibrium.

The second approach is to change the game played between parties to a se-
quential game, and to use subgame perfect Nash equilibrium, or one of its
refinements, as the equilibrium concept. The simplest such game is a two-
stage game, where, let’s say, the challenger moves first and the incumbent party
moves second. Here subgame perfect Nash equilibrium is called Stackelberg
equilibrium—the second player plays its best response to the first player, who
takes this into account in proposing his policy. Stackelberg equilibrium gener-
ally exists in the multidimensional, two-party game.

But perhaps it is the incumbent who should move first and the challenger
second? Indeed, is there a natural order for the two parties to move in? I
think not. Those who have studied party manifestos argue that policies that
parties announce in elections are close to their manifestos—indeed, that the
party manifesto can be taken to be the policy of the party. (See Klingermann,
Hofferbert, and Budge 1994.) And manifestos are written approximately si-
multaneously. (Recall that we have previously explained the uncertainty that
parties have about the outcome of the election as uncertainty at the time man-
ifestos are written, some time prior to the election.) If this is so, then it is more
appropriate to model the game as one of simultaneous moves.

The third approach, which has become important in political science, is to
recognize that political decisions are made in a complex institutional frame-
work. This approach has been applied especially to decision making, and po-
litical competition, in legislatures. I conjecture that this approach is (almost)
always a special case of the sequential-game approach; the set of players may,
for instance, consist of committees, which move in an established sequence.
Although this approach may solve the problem of legislative behavior, it is not
clear that it solves the problem of competitive, popular elections. Of course, the
existence of legislatures means that it is incorrect, strictly speaking, to assume
that the policy of the winning party in an election will be implemented, for
legislation is a process that occurs after the election. Nevertheless, if elections
are “the central act of democracy” (Riker 1982, 5), then the modeler should not
abdicate from modeling them as they appear to be, namely, as simultaneous-
move games between parties.

The fourth approach generalizes the set of Condorcet winners in a policy
space. A policy ¢ is said to cover a policy r if a majority of voters prefer ¢ to
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r, and for any policy z, if a majority prefer z to ¢, then a majority prefer z to
r. The uncovered set is the set of policies that are covered by no policy. If the
set of Condorcet winners is nonempty, then it coincides with the uncovered
set. But the uncovered set is nonempty even if Condorcet winners fail to exist.
Advocates of using the uncovered set as a solution concept in the Downs game
argue that a rational player would only play a strategy in the uncovered set.
For suppose a player plays a policy r which is covered by a policy ¢. Then r
is “dominated” by ¢, in the sense that ¢ defeats r and any policy that defeats
t defeats r. If all covered elements are thus dominated, then a player should
restrict itself to playing uncovered elements.

But this argument fails to hold water, because even uncovered elements can
be defeated by other policies, if the Condorcet set is empty. The argument
actually says, “If a party plays any policy, it might as well play an uncovered
one,” but it fails to show that there is any policy the party should play. In
any case, one should observe that the uncovered set only generalizes the set
of Downs equilibria, not the set of Wittman equilibria, so it is of no help if
we believe that parties are of the Wittman variety. (There may be a version
of uncoveredness for the Wittman game, but it would suffer as well from the
criticism just enunciated.)

Finally, it has been fairly common for researchers to take the nonexistence of
Downs equilibrium in the multidimensional game as the end of the matter, and
content themselves with studying cycling.! Cycling is what presumably occurs
if there is no Nash equilibrium in a game: parties enter an unending sequence
of moves in which each party plays a best response to the other party’s last
move.

If, however, one believes that electoral competition is reasonably thought of
asasimultaneous-move game by “public” parties, then one should not settle for
any of these solutions. The methodological premise of the equilibrium theorist
is that if a model produces no equilibrium, while the real situation it attempts
to describe involves a pair of stable moves by the two actors, then the model
is misconceived. I must underscore (for those skeptical of the equilibrium
method) that this methodological premise does not exhibit a blind attachment
to equilibrium theory: the “while” clause in the previous sentence is key in
justifying the search for an equilibrium explanation of the phenomenon.

1. For a concise history of how analysts have responded to cycling, see Hinich and Munger
(1997), 64-71.
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We are thus directed back to reformulating the party-competition game,
somehow, so that a Nash equilibrium in pure strategies exists. One avenue that
remains potentially open is to alter the preferences of the parties (from Wittman
or Downs payoff functions to something else) so that Nash equilibrium exists.
This is the tack we shall pursue.

8.2 Party Factions

We begin by observing that, in reality, parties rarely act as unitary actors—they
are composed of factions, which struggle internally over the line of the party.
More specifically, we shall argue that parties typically consist of three factions:
the reformists, the opportunists, and the militants. (In particular cases, there
may be fewer or more factions, but these three seem almost ubiquitous.) The
opportunists are those who use the party only as a vehicle for a career; their
objective is to maximize the probability of the party’s victory in the election.
Reformists are the political actors of the Wittman model: they wish to maximize
the expected utility of the party. If the utility function of the party is, for
example, the utility function of the constituency of the party, or of an interest
group whom the party represents, then the reformists are the perfect agents
of that constituency or interest group, in the sense that they maximize its
expected utility. The militants are those who wish to announce a policy as close
as possible to the ideal policy of the interest group. If you will, they are not
focused upon the outcome of the election at hand; rather, they wish to use
the election as a pulpit for advertising the party’s views. To summarize, the
opportunists are interested in winning; the reformists are interested in policies;
and the militants are interested in publicity.

We formalize this as follows. Let T be the policy space, and let v! and v* be the
vINM utility functions of the parties defined on T, as in the Wittman model. Let
7 : T x T — Rbethe probability that ¢! defeats t2. Each of the three factions of
each party is endowed with a preference order on T' x T, denoted respectively
by >, >, and >,,. These orders, for the factions of party 1, are given by

(t!, )= (s', s%) iff
a(th 2w + QA =1, ) D) > 7L sHvish + A —n (st sPH)vi(s);
(t', =o', 5D iff m(t', t?) > m(s',s%); and

(', )=y (s %) ff Vi) = v,
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Each of these orders is a binary relation on T x T: that is, it is associated
with a set of points in (T x T)2. (For example, we say that ((t, ?), (s}, s%)) €
Oiff w(t', t?) > n(s',5%).)

We now define the preference relation of party 1 as the intersection of these
three binary relations. This will be a quasi-order on T x T, that is, an in-
complete preference relation. Informally, this amounts to saying that the party
weakly prefers (t1, t2) to (s!, s?) iff all three of its factions weakly prefer (¢!, %)
to (s, s%), and it (strictly) prefers (¢!, t%) to (s!, s?) iff all three of its factions
weakly prefer (¢!, t2) to (s!, s?) and at least one faction (strictly) prefers (t!, t%)
to (s', s?). Denote party i’s quasi-preference order on T x T by IT’; now, IT' is
not a function, as in our earlier theories, but a binary relation , that is, a set in
(T x T)2. Conventionally, we denote the fact that party i weakly prefers (¢!, t%)
to (s!, s?) by (¢!, t)H T (s, s2).

The reason the party’s preferences are incomplete is that there will be (many)
pairs of points in T x T—(t!, t?) and (s', s*)—such that two factions prefer
(t!, £?) to (s, s*) and one prefers (s, s?) to (¢!, t?), and so the party has no
order on these two pairs.

We now have two parties with preference relations on T' x T. We define:

Definition 8.1 A policy pair (¢!, t2) is a party-unanimity Nash equilibrium
(PUNE) iff it is a Nash equilibrium of the game (1%, 12, T); that is, for all
seT,

(tY, DI, t2) and (¢, DI 5).

In English, this says that a policy pair is a PUNE iff neither party’s factions
can unanimously agree to alter their party’s proposal, given the policy played
by the opposition party. For factions to unanimously agree to deviate from
their party’s proposed policy, it must be that all three factions weakly prefer
the proposed deviation, and at least one (strongly) prefers it, given the play by
the opposition.

Note that deviations are much less likely to occur in this game than in
the game played between two parties where the sole faction is the reformist
faction—for in this game, three different preference orders have to be satisfied
for the deviation to be implemented, whereas in the Wittman game, only the
reformists have to be satisfied. So we should expect that there will be more Nash
equilibria in this game than in the Wittman game played on the same policy
space. Similarly, the Downs game is one played between two parties whose sole
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factions are opportunists, and so we should expect more equilibria in this game
than in the Downs game.
In fact, we have the following.

Definition 8.2 A Downs equilibrium (t!, t2) is strict iff for all s € T, s #
th (s, t2) < % and forall s € T,s £ t, m(t',s) > % A Wittman equilibrium
(t4, 2) is regular if 0 < 7 (¢, t?) < 1 and v!(t') > v!(t?) and v*(¢?) > v*(t}).

Let the Downs game, the Wittman game, and the three-faction game be
denoted by G”, G", and GROM. Let the Nash equilibria of the ROM game
be denoted N (GRM). Further, denote by G°M the game where unanimity of
factions is required for deviation, but there are only two internal factions in
each party, the militants and the opportunists, and denote its Nash equilibria
by N(G°M). Denote by SN (GP) the strict Nash equilibria of the Downs game,
and by RN (G") the regular Wittman equilibria. Then we have

Theorem 8.1

(1) RN(G") C N(GROM);
(2) SN(GP) C N(GROM);
(3) N(GROM) = N(GOM).

Proof:

1. Proof of (1). Let (¢!, t?) be a regular Nash equilibrium of the Wittman
game. Now consider the ROM game. By definition, there is no policy s to which
the reformists in party 1 would like to deviate. Therefore, if party 1 can find a
deviation s agreeable to all three of its factions, it must be that the opportunists
and the militants in party 1 both weakly prefer (s, t?) to (¢!, t?), and at least
one of them (strictly) prefers (s, t2) to (¢!, t?). This means that

n(s, ) >x(t', ) and v'(s) = v'(t),

and at least one of these inequalities is strict. But this implies, since 7 (¢!, 2)>0
and v!(t!) — v!(¢?) > 0 (by regularity), that

81) 7 )W) = v >, ) = v ().
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But (8.1) is equivalent to saying that the reformist faction of party 1 strictly
prefers (s, t%) to (t!, t), which contradicts the supposition that (¢!, t?) is a
Wittman equilibrium.

This proves that there is no policy s to which all three of party 1’s factions
can agree to deviate. A similar argument shows that there is no policy to which
all three of party 2’s factions can agree to deviate from ¢2, while facing t!. Hence
(t', t?) is a PUNE.

2. Proofof (2). If (¢!, ) is a strict Downs equilibrium, then there is no policy
s that the opportunist faction in either party will agree to deviate to. Hence
(t', t*) is a PUNE.

3. Proof of (3). First, we show that N(GROM) 5 N(GM). Let (¢!, 1)
N(GOM), but suppose there is a policy s that the three factions of party 1
can agree to deviate to. Then it must be that the R faction in party 1 strictly
prefers (s, t?) to (t!, t*) and both the O and the M factions in 1 are indifferent
between (s, t2) and (', £2). But if O and M are indifferent between (s, t?) and
(t1, 1), itis easy to compute that the R faction must also be indifferent. This is
a contradiction, which proves this direction.

We now show that that N (GROM) ¢ N(GM). Let (¢!, t?) € N(GROM), but
suppose there is a policy s that factions O and M, in party 1, can agree to deviate
to (thatis, both weakly prefer (s, t2) to (¢!, t?) and one strictly prefers the former
to the latter). Then it is immediate to see that the R faction strictly prefers (s, t2)
to (t', t?), contradicting the assumption that (¢!, t?) € N(GRM). This proves
the claim. =

The first two statements in this proposition say, in English, that “strict
Downs” is a refinement of PUNE, and “regular Wittman” is a refinement
of PUNE—or equivalently, that PUNE is an extension of those two equilib-
rium concepts. Therefore, even if strict Downs and regular Wittman equilibria
should fail to exist, the door is still open for PUNE to exist.

The third statement says that, as far as the concept of PUNE is concerned,
the reformist faction is gratuitous. Mathematically, we can forget about the
reformists as far as characterization of PUNE is concerned. This does not
mean that reformists do not exist in actual politics: rather, that if PUNE is
the appropriate characterization of political equilibrium, then the existence of
reformists will not narrow the set of equilibria over what would have occurred
with only militants and opportunists in the parties. As we shall see, the fact
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that reformists are “gratuitous” in the game GROM

allows us to simplify the
mathematical characterization of equilibrium.

Another interesting consequence follows from statement (3) of the theorem.
The concept of Wittman equilibrium is a cardinal concept, by which is meant the
following. The Wittman game presupposes as data, preferences over lotteries
on T for each party—that is, vNM utility functions v! and v* defined on T. Now
consider a Wittman game with vNM utility functions ' and u? on T, where v/’
is some nonlinear strictly increasing transformation of v'. That is, each party, in
these two games has different preferences over the lotteries on T, although its
induced preferences on sure policies in T are identical in the two games. It will
(generically) be the case that the Wittman equilibria of the games (v, v, T)
and (1!, 4%, T) are different.

But the PUNESs associated with these two games are identical. For to compute
the PUNEs of a game, we can discard the reformist factions, and the mili-
tants (in each party) in the games (v!, v?, T) and (u!, u?, T) have the same
preferences—militants do not evaluate lotteries, they only evaluate utility on
single policies in T'! In other words, PUNE is an ordinal concept; to compute
PUNEs, we need only the ordinal preferences of the militants on T (and the
ordinal preferences of the opportunists on T x T').

It is time to consider a criticism of the party-unanimity idea, the idea that all
three factions must agree when considering whether to deviate from a proposed
policy to an alternative, facing a given proposal by the opposition party. The
criticism maintains that the unanimity requirement is too strong; rather, one
should substitute a weaker condition sufficient for deviation, such as “two out
of three factions agree to deviate,” or “the factions bargain to a compromise
position when facing the opposition’s policy.”

The first of these alternative formulations again lands us in the undesirable
situation that Nash equilibrium fails to exist. Let us suppose that a party will
deviate from a proposed policy, facing a fixed policy from the opposition, if two
out of three of its factions can find a preferable alternative (always meaning that
two factions weakly prefer the alternative, and one strictly prefers it). We then
can define a two-faction Nash equilibrium as a pair (t', t*) such that no pair
of factions in either party can find an agreeable deviation. I claim that a two-
faction Nash equilibrium (¢!, £?) is a Wittman equilibrium. For suppose not,
which means that the reformists in, say, party 1, strictly prefer the pair (s, t*)
to the pair (¢!, t2), for some s. We also know that both the opportunists and the
militants in party 1 strictly prefer (¢!, t2) to (s, t2), for if not, then the reformists
and one other faction would agree to deviate to s from t!, which contradicts the
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premise that (¢!, t?) is a two-faction equilibrium. But if both the opportunists
and the militants strictly prefer (t!, £2) to (s, t%), then algebra quickly shows
that the reformists cannot prefer (s, t?) to (t!, t?): a contradiction.

Thus a two-faction equilibrium is a Wittman equilibrium, and as Wittman
equilibria often fail to exist (see section 8.5), two-faction equilibrium does not
solve our existence problem.

We briefly postpone the discussion of bargaining among factions.

There is, as well, a completely different story that leads precisely to the con-
cept of PUNE, although the name “party unanimity” does not describe this
story. Suppose the party is a unitary actor, of the Wittman variety: it would like
to maximize its expected utility. The party, however, is boundedly rational, in
the following sense. Neither party, i, can write down the function 7 or the func-
tion v'. However, given a policy t2, for any pair of policies t and s, party 1 can
say which of s or ¢ has the greater probability of defeating t2. (And a symmetric
statement holds for party 2.) Further, given any two policies s and ¢, party i can
say which of the two it prefers. Therefore, the party is limited to comparisons
of the following kind. Given any policies s, ¢, and t2, party 1 says it prefers the
electoral situation (s, t2) to the electoral situation (t, t*) when (1) s has a higher
probability than ¢ of defeating t2, and (2) it prefers policy s to t. Failing either
condition (1) or (2), the party then considers whether it prefers the situation
(t, t2) to (s, t2). If not, then it cannot rank s and t, as responses to ¢2.

We now define Nash equilibrium in the usual way: a policy pair (t!, £?) is a
boundedly rational Nash equilibrium iff there is no electoral situation (s, t2) that
party 1 prefers to (t!, £2), and there is no situation (¢!, s) that party 2 prefers to
(t', t2). The reader will immediately observe that such an equilibrium is exactly
a PUNE: for the two tests that bounded rationality permits are precisely the
tests for deviation by the opportunists and the militants, in our first story. By
Theorem 8.1, statement (3), it follows that boundedly rational equilibria are
precisely PUNEs.

Finally, a brief historical excursus. In describing the internal struggles in the
German Social Democratic Party during the first twenty years of the twentieth
century, Carl Schorske ([1955] 1993) refers to the party bureaucracy, the trade
union leadership, and the radicals (Karl Kautsky, Rosa Luxemburg). His de-
scription of the goals of these three factions fits the description given here for
the opportunists, the reformists, and the militants, respectively. The bureau-
cracy was primarily interested in winning elections, the trade union leadership
was interested in winning reforms for workers, and the radicals were inter-
ested in propagating the line. Regarding the radicals, Schorske writes, “‘No
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new taxes, but reduction of armaments!” They [the radicals] saw it as the duty
of the party to carry this message to the people, to make them understand that
the fight against imperialism came first and foremost” (161).

James Schlesinger (1991) describes political parties as organizations formed
by benefit seekers (party members) and office seekers (candidates). The party
organization is characterized by tensions between those two groups. He
concludes, however, that in general parties are ruled by office seekers, and
a “principal-agent” relationship characterizes the connection between benefit
seekers and officeholders. Schlesinger writes: “In democratic politics, no party
consists solely of office seekers or benefit seekers. Rather, conflicts arise within
parties because the two goals can impose conflicting views of how to win elec-
tions and, ultimately, conflicting views of how parties should be organized”
(148).

Aaron Wildavsky (1965) describes the 1964 U.S. presidential election and,
specifically, why Republicans chose Goldwater as their candidate despite the
belief that he had no chance to win. His conclusion is that, because of the
particular circumstances, “purists” were able to control the party and impose
their candidate. There are many quotations that describe purists’ behavior and
present them as militants. For example: “The distinguishing characteristics of
the purists: their emphasis on internal criteria for decision, on what they believe
‘deep down inside’; their rejection of compromise; their lack of orientation
toward winning; their stress on the style and purity of decision—integrity,
consistency, adherence to internal norms” (395).

In contrast with purists, “politicians” are characterized by “the belief in com-
promise and bargaining; the sense that public policy is made in small steps
rather than big leaps; the concern with conciliating the opposition and broad-
ening public appeal; and the willingness to bend a little to capture public sup-
port” (396). This sounds like the behavior of reformists, although Wildavsky
does not characterize politicians as behaving strategically with respect to the
opposition party.

Although we can readily understand the psychology of opportunists and
reformists—they are, after all, the creatures of the Downs and Wittman
models—what explains the modus vivendi of militants? I think militants can
only be understood in a dynamic context. Their goal is to change the prefer-
ences of some voters, and to do this, they argue for putting forth a position
close to the ideal point of the preference order represented by v/, for in so do-
ing they will have to argue why that policy is correct. According to this view,
the difference between the reformists and the militants is one of time rates of
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discount: reformists want to do the best they can for their constituency today,
while militants adopt the strategy of changing the preferences of voters, so that
when they win at some future date, it can be with a better policy.

8.3 PUNE as a Bargaining Equilibrium

In the literature to date, and thus far in this book, a Wittman equilibrium
has been conceived of as a Nash equilibrium between two parties each of
which is a unitary actor: each party maximizes its expected utility. But we
now demonstrate that Wittman equilibrium can be viewed, equally well, as
an equilibrium between parties with factions that bargain with one another.

Think of two parties, each composed of the three factions we have intro-
duced. Each faction has preferences on T x T. Party 1’s opportunists have
von Neumann—Morgenstern preferences represented by the (vVINM) utility
function O(t!, t?) = m (¢!, £?), its militants have von Neumann—Morgenstern
preferences represented by the (vNM) utility function M (1, £2) = v!(¢!), and
its reformists have von Neumann—Morgenstern preferences represented by the
(VNM) utility function R' (!, t2) = m (¢!, 2 )v' (t") + (1 — m(t!, £2))v' (£?). We
do not write down the analogous utility functions for party 2’s factions.

Suppose that party 2 proposes policy 2. The three factions of party 1 now
bargain to an equilibrium: we take Nash bargaining as the procedure. What are
the impasse utilities, the utilities of the various factions should party 1 fail to
come to an agreement? In that case, party 2 wins the election by default; hence
the probability of victory for party 1 is zero. Since policy > would be the only
policy in the field, only it will be publicized; hence party 1’s militants receive a
utility of v!(¢?). The Nash bargaining solution” between these two factions is
the policy f that maximizes the “Nash product™:

(8.2a) maTx(n(t, 2) — 0) (v () — v (t?)).

The solution to this problem also maximizes 7z (t, t2)v! (t) + (1 — 7 (¢, t2))v! (£2),
which is the payoff of the reformists in party 1, given the opposition policy t>—
so they are completely satisfied with the bargain reached between the militants
and the opportunists.

2. For discussion of the Nash bargaining solution, see, for instance, Roemer (1996, section 2.2).
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Similarly, facing a policy ¢! from party 1, party 2’s opportunists and militants
Nash-bargain to a policy ¢ that solves

(8.2b) maTX((l — 2@t 1) — 0) (1) — v (h)).

The solution of (8.2b) also maximizes the utility of party 2’s reformists, facing
t! from the opposition.

We now define an unweighted Nash-bargaining equilibrium in the two-party
game as a pair of policies (t!, t) such that, facing ¢, party 1’s factions Nash-
bargain to t!, and facing t!, party 2’s factions Nash-bargain to 2. We have
just demonstrated that an unweighted Nash-bargaining equilibrium is precisely
a Wittman equilibrium.

Thus we may interpret Wittman equilibrium, when it exists—as in the uni-
dimensional model—as a faction bargaining solution. But as Wittman equi-
librium may not exist when policy spaces are multidimensional, so we weaken
the concept of bargaining from Nash bargaining to the mere requirement that,
facing the policy of the opposition party, there is no policy that all factions of
our party prefer to the one on the table. This is the definition of PUNE.

Thus PUNE can be regarded as a generalization of Wittman equilibrium. In
other words, we do not introduce party factions only in the multidimensional
problem: they exist as well in the unidimensional problem and engender, there,
the Wittman equilibrium.

Indeed, we can go further, and view PUNE as a weighted Nash bargaining
solution. Suppose that the bargaining process between party 1’s opportunists
and militants, facing a proposal t2, resolves to

(83a)  t'=argmax(r(t, £2) — 0)* (' (t) — v'(12))*',
t

and that, facing t!, party 2’s bargaining process resolves to

(83b) 2 =argmax(l — (¢}, £)* VA1) — >N,
t

wherea!, B!, @?, and B2 are positive numbers. Define a policy pair (¢!, t?) satis-
fying (8.3a,b) to be a Nash bargaining solution with weights (o, B), (a?, B?)).
It is obvious that if the products in (8.3a,b) are both positive at the solution,
then (t!, t2) is a regular PUNE, for it is impossible to make either the oppor-
tunists or the militants in either party better off without reducing the utility
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of the other faction. The interesting question is the converse: when can we say
that a PUNE is a weighted Nash bargaining solution?

Let us first note that we can view the bargaining process modeled in (8.3a,b)
as including the reformist factions. If all three factions in party 1, say, par-
ticipate in the bargaining process, then the weighted Nash solution would
maximize

(6 )W () = v ()P (e, ) @) = v (7)),

which reduces to the representation (8.3a), witha! =a + y and B! =B + y.
Define

A ={t |7, t>) >0 and v'(t) —v'(#?) > 0},
AtHY={r|1—n(t, 1) >0 and v*@) —v*(}) > 0).

These sets were called the decent responses by parties 1 and 2, respectively, in
Chapter 3.

Assumption A Log((-), t?) and Log(v!(-) — v!(¢?)) are concave functions on
T; Log(1 — 7 (t', ) and Log(v*(-) — v*(t')) are concave functions on T.

Note that the assumption of log concavity of & has been used before—see
Corollary 3.2.

Theorem 8.2 Let (t!,t?) € T x T be a regular PUNE at which Assumption A
holds. Then (t, t?) is a weighted Nash bargaining solution.

Proof:
Let

U'(t?) = {(Log 7 (¢, t7), Log(v' (t) — v!(t*))) | t € A' (D)},
and
U%(t") = {(Log(1 — 7 (¢, 1)), Log(V*(t) — v*(t"))) | t € A*(tY)}.

By Assumption A, these two sets in R? are convex. Because (t!, t?) is a PUNE,
the point P = (Log 7 (¢!, t?), v} (t') — v!(¢?)) lies on the boundary of U (¢?), as
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Log(v!(t) —v!(£2))

3

Ul(t2) ¢

Logm(t, t2)

Figure 8.1 The proof of Theorem 8.2

shown in Figure 8.1. Let the set X, as depicted in the figure, consist of all points
to the northeast of P. There is a line, ¢, separating these two convex sets: let its
equation be a'x + B'y = k. Then it is clear from the figure that ¢! maximizes

o' Log m(t, t*) + B! Log(v'(t) — v (1))
on Al(t?). Taking anti-logs, we have

t! = argmax 7 (1, )% (V' (1) — v' ().
teAl(t2)

In like manner, we deduce:

12 = argmax(l — (', )% (A1) — v2(tH))P
teAZ(tl)

Thus (t!, t?) is a weighted Nash bargaining solution. =
Thus, at least when Assumption A holds, we can say that PUNEs are exactly

equilibria in which the factions in each party are engaging in a Nash bargaining
game.
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8.4 A Differential Characterization of PUNE

There is a simple differential characterization of PUNE using Farkas” lemma
(see the Mathematical Appendix), which is a version of the “separating hyper-
plane theorem.” We shall use this characterization of PUNE in much of the rest
of the book.

We suppose the data (v!, v, r, T), where T C R". We suppose that (¢, t?)
is a PUNE which is interior in T x T, and in which neither the militant nor
the opportunist faction of either party is at an ideal point. Suppose further
that v' are differentiable and that 7 is differentiable at (¢', t?). Denote by Vv
the gradient vector of v/, a vector in R”, by V,7 the gradient vector of 7= with
respect to t!, and by V, 7 the gradient vector of 7 with respect to t2. Let d € R"
be any direction. (So d # 0.) Then it follows that

(8.4a) vyl -d >0 implies Vlrr(tl, t?).d<0, and

(84b)  VV*(t?)-d>0 implies Vzn(tl, t?)-d>0.

Statement (8.4a) says that if a move in direction d from t! increases the utility
of party 1’s militants, then it must decrease the utility of party 1’s opportunists,
and statement (8.4b) says exactly the same thing for party 2. If either (8.4a) or
(8.4b) failed for some direction d, then (¢!, t*) would not be a PUNE, for both
the militants and the opportunists in some party could find an agreeable, small
deviation in that direction.

Now (8.4a) can be rewritten:

(85) Vd#0, deR", Vv'(t)-d>0 implies —V,7(t', ¢t} -d>0.
Statements (8.5) and (8.4b) imply, by Farkas’ lemma, that Vv!(¢!) is a non-
negative multiple of —V, 7 (¢!, t*) and that Vv?(¢?) is a non-negative multiple
of V,7r (¢!, t?); in other words, there are non-negative numbers A and u such
that

(8.6a)  Vvi(th) =AVm(th 1%

and

(8.6b) Vvt = /vaﬂ(tl, t2).
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These are thus necessary conditions for (¢!, t?) to be a PUNE of the stated
type.’

Figure 8.2 illustrates. Here, the policy space is a simplex, T, in the three-
dimensional space with coordinates (w, m, ). Point L is the policy of party 1 at
a PUNE; itisinterior in T. Equations (8.6a) and (8.6b) say that the indifference
curves of v! and 7 (-, t?) through ¢! are tangent: this is precisely the condition
that there is no mutually attractive deviation to the two factions in party 1 (that
is, no “lens” in the upper contour sets of both factions at ¢!). Tangency of the
two indifference curves (more generally, indifference surfaces) is characterized
by their gradients’ pointing in opposite directions, which is the content of
(8.6a,b). There must be a similar picture for the policy of the other party at
this PUNE.

What about sufficient conditions for a PUNE? Vector equations (8.6a) and
(8.6b) constitute 2n equations in 2n + 2 unknowns (¢!, t3, A and ). Any
solution with A > 0 and . > 0 and #' € T satisfies the local conditions for a
PUNE: in sufficiently small neighborhoods of ¢! and 2, there is no deviation
by either party that all three of its factions prefer.* We cannot be guaranteed,
however, that a point satisfying these two vector equations is a (global) PUNE
without further curvature assumptions on the relevant functions. In particular,
if the functions v' are strictly quasi-concave (that is, single-peaked) and 7 is
quasi-concave in ¢! and quasi-convex in ¢2, then any “local PUNE” is a PUNE.
But as we have seen in Chapter 6, the function 7 is generally not quasi-concave
in our formulations of it. In Figure 8.2, the indifference curve of the militants
outlines a convex upper contour set, but not so the indifference curve of the
opportunists (since 7 is not quasi-concave in t!).

The fact that (8.6 aand b) constitute 2n equations in 21 + 2 unknowns means
that either they possess no solution with non-negative A and p or they possess a
continuum of acceptable solutions, a two-dimensional manifold of solutions—
intuitively, a two-dimensional surface in T x T. (There is only a degenerate
case in which these equations possess a finite number of solutions.) As we shall
see, in applications, we usually find ourselves in the latter situation.

3. Sometimes it is useful to compute PUNEs where one party’s militant faction (for example)
is at its ideal point. In this case, we replace equations (8.6ab) with the equation Vv!(¢!) = 0.

4. It is important to note that conditions (8.6a and b) are stronger than “first-order conditions,”
in the sense that they guarantee that the point in question is a local equilibrium. First-order
conditions, in contrast, only guarantee that the point in question is a stationary point—it could
be a minimum, a saddle point, or a maximum of the function in question.
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n(R)=n(L,R)

vi() =vi(L) =
B c
e N\,

Figure 8.2 Party 1’s policy at local PUNE
Finally, let us write down the separating-hyperplane condition for a policy

pair (¢!, t?) to be a PUNE, when the policy space is constrained. Suppose that
the policy set T is characterized by a set of inequalities, of the form

gk(t) >0,k=1,...,z.
Furthermore, suppose the functions g* are differentiable; we denote their
gradients by V¢X. Suppose that at the PUNE (¢!, ¢2), the following constraints
are binding:

gith=g¢tthH=...=¢"1tH =0

and

87) ) =g"H=...=g¢51») =0.
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Then we have the following: if d # 0 is any direction in R”, then

ngl(tl) -d>0,..., ng’(tl) -d >0,

(8.8a)
i) -d>0= Vvt t*) -d <0.
and
Veh(t?) -d>0,..., Vg1 - d >0,
(8.8b)

Vvi(t?) -d > 0= V,x(t', t}) -d > 0.

Statement (8.8a) says that, if moving in direction d from ¢! keeps the policy in
the feasible region (T') and increases the utility of the militants in party 1, then
it must decrease the utility of the opportunists in party 1; (8.8b) says the same
thing for party 2.

Now (8.8a) is equivalent to:

vdeR", d#0, V¢hih)-d>o,...,v¢"tY) -d>o,
(8.9)
vl -d>0= -Vt t?) -d >0.

We now apply Farkas’ lemma, as follows. Let
al=vghih, .. . ,a"=veh(h), at=wilith), b=-Vr(, ),

then (8.9) tells us that statement B of Farkas’ lemma is false for this set of
vectors {a', . . ., a "L, b). It therefore follows that statement A of Farkas’ lemma
is true for this set of vectors, which means there exist non-negative numbers
x0 xM ... xP such that:

r
(8.102) —V,m(t!, ) =) £Vghi(eh + 1"V ().
i=1

In like manner, (8.8b) implies that there must exist non-negative numbers
yO, yM, .., ¥ such that

(8.10b)  V,m(t, %) = Z yIivei(?) + y'ViA (2.
j=1
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Conversely, if (¢!, t?) satisfies equations of the form (8.10a and b), then it is, at
least locally, a PUNE.

We see that equations (8.10a) and (8.10b) and the equations (8.7) constitute
2n 4+ r + s equations in 2n + r + s + 2 unknowns. Again, either there are no
local PUNEs, or there is a 2-manifold of them.

We have shown that, no matter what the dimension of the policy space, there
will be a 2-manifold of PUNEs, if there are any (except for singular cases). Since
the dimension of T' x T is 2n, the set of PUNEs form a very small set—at least
in terms of measure—in T x T, for a 2-manifold is a set of measure zero in
T x T, which has dimension greater than two.>

8.5 Regular Wittman Equilibrium

Knowing that the set of PUNE:s is a 2-manifold and that (when Assumption A
holds) PUNEs are weighted Nash bargaining solutions, we can finally un-
derstand the existence problem for Wittman equilibrium with uncertainty in
multidimensional policy spaces.

In a weighted Nash bargaining solution, all that matters are the relative
weights yi = %,-, for i = 1, 2; thus we may characterize a PUNE as an ordered
pair (y!, y2). A regular Wittman equilibrium has (!, y2) = (1, 1). Denote
the set of weights (!, y?) associated with PUNEs for a given environment e as
2 (e). Since the set of PUNEs is a 2-manifold (when it exists), 2 (¢) will typically
contain an open set in Ri. 2 (e) may or may not contain (1, 1). If (1, 1) & Q(e),
then e admits no regular Wittman equilibrium. However, if (1, 1) € Q(e), and
if (1, 1) is in the interior of 2 (e), then regular Wittman equilibrium is generic:
that is, if e’ is a slight perturbation of e, then ¢’ will also possess a regular
Wittman equilibrium (because the set €2(e) will move continuously with the
perturbation).

We know of no interesting conditions that guarantee that (1, 1) € Q2 (e). All
we can say is that there is no guarantee that Wittman equilibrium exists when
dim T > 1, but if one does exist, it is probably generic.

Example 8.1 We proceed to construct an example where regular Wittman
equilibrium is generic. Let there be a continuum of types parameterized by w,

5. The dimension of the solution manifold is affected by the number of (nonredundant)
factions in the parties. We shall see in Chapter 12 that when there are three nonredundant factions,
the set of PUNE:s is a 4-manifold.
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the wage an individual is capable of earning. The proportional income tax rate,
t, is used to finance the provision of two public goods, G;, and G,. The utility
function of consumer-workers is

u(x, G, G,) =x +5Log G, + 7 Log G,,
where x is consumption of the private good. If the tax rate is ¢, then all workers

supply labor in amount 1 — ¢. Let w be distributed according to a probability
measure F whose mean is denoted w. Then the indirect utility function is:

v(t, G, w) = (1 — t)*w + 5Log G, + 7 Log(t(1 — Hin — G,),
where we have expressed the consumption of G, using the budget constraint.
There are two parties, L and R, whose utility functions are the utility functions
of two types, w; and wy. That is, the parties’ utility functions are:

v (t, G) =v(t, G, wy) and vy (¢, G) = v(t, G, wy).

We use the error-distribution model of uncertainty, with degree of uncer-
tainty 7. We may compute that, if t! > t2, then all w less than the number
W (t!, GY; 2, G?) prefer policy (t!, G!) to policy (2, G*), where:

w(t!, GY 2, GP) =

[5Log G* + 7 Log(t*(1 — t)u — G*) — (5 Log G' + 7 Log(t'(1 — t"yu — GY)]
(1—tH)2—(1—12)? '

Consequently, if party L puts forth the policy with the larger tax rate, then its
probability of victory is

F(y(t', G5 1%, G)) +n—.5

x(t', G %, GH =
2n

It is easy to see that both parties will propose interior policies (¢, G) > 0.
Consequently the equations for a PUNE are:

Vv, (t5, GH = —xt'v,m (th, GE R, GR),  and

Vg(tR, GR) = xRV, (¢h, GE, R, GR),
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where x! and xR are non-negative Lagrangian multipliers. Now define:

p__mGhT e 1oL T
Tl — v, (R LTS S e

where Tl and 7R are the two policies. Note that % and y® are themselves non-
negative. Then we can write the above two PUNE equations as:

L Vo (th, GE R, GR) Vv, (t", Gb) _
mw(tL, GL, tR, GR) v (tE, GE) — v, (1R, GR) — 7
(8.11) 5
& V(1 — (5, GE R, GRY) Vg(tR, GR)

1 — (%, GL, R, GR) va(tR, GR) — vp(th, GE) —

but these are just the first-order conditions for a weighted Nash bargaining
solution, where ! is the relative power of the factions in L, and y® is the relative
power of the factions in R! This shows us how to calculate the relative power
of the factions in a PUNE.

We now parameterize the model as follows. F is the lognormal distribution
with median 30 and mean 40, and (w’, w&, n) = (20, 50, .20). (Thus F is
approximately the distribution of income in the United States, in thousands of
dollars, the L party represents an individual with a wage capacity of $20,000,
and the R party represents an individual with a wage capacity of $50,000.)

A Wittman equilibrium is a solution of equations (8.11) with y = y® = 1.
Wittman equilibrium exists: in fact, the policies are:

(t5, Gy = (220894, 2.86833),  (t%, G®) = (.153792, 2.169),

and L wins with a probability of .532. I next generated many PUNEs with
(v%, ¥®) in a small neighborhood of (1, 1). Figure 8.3 shows a plot of these
PUNEs, in (y%, y®) space. The cluster around the point (1, 1) are the PUNEs
in question.

Consequently, the point (1, 1) is interior in the set of PUNEs for this model,
and so any small perturbation of the parameters of the model will continue to
support a Wittman equilibrium; that is, Wittman equilibrium is generic in this
two-dimensional model.
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Figure 8.3 Some pairs of points (y;, yr) associated with PUNEs of Example 8.1

8.6 PUNE:s in the Unidimensional Model

We have demonstrated in section 8.3 that PUNE is a generalization of Wittman
equilibrium. Let us study what the set of PUNE:s is if the policy space is unidi-
mensional.

Let us suppose the error-distribution model of uncertainty. Let ¢!, t2, and ™
be the ideal points of party 1, party 2, and the “median voter,” and suppose that
t! <™ < 12 Let (t!, t*) be any policy pair such that ! < ¢! < " < t> < #%. The
opportunists in party 1 will want to deviate from ¢! in the direction of #, while
the militants in party 1 will want to deviate in the direction of #!. Similarly for
the factions in party 2. Thus (¢!, t?) is a PUNE.

As usual, there is a continuum of PUNEs, but in the unidimensional case,
the continuum fills the policy space—it is a 2-manifold in R?. Thus PUNE has
no predictive power whatsoever and is a useless equilibrium concept in this
setting.

We should understand this as follows. Recall that I justified the PUNE con-
cept as incorporating our agnosticism about the nature of intraparty bargain-
ing. What we have shown is that, with multidimensional policy spaces, that
agnosticism still allows us to make interesting predictions about equilibrium,
in the sense that the set of PUNEs is a small set in the space T' x T. But with uni-
dimensional politics, that agnosticism turns out to kill our predictive power.
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We may still hold to our agnosticism about the nature of intraparty bargain-
ing, but we then have very little to say about what happens in unidimensional
politics. Adopting, however, the assumption of (unweighted) Nash bargaining
gives us a precise prediction of the outcome in unidimensional competition.
As I believe politics are rarely, if ever, unidimensional, I am not particularly
bothered by the indeterminacy of PUNE in the unidimensional model.

8.7 PUNE:s in a Multidimensional Euclidean Model

In this section we compute the PUNEs in a common model, the Euclidean
model with a two-dimensional issue space. Let preferences of voters be given

by
it

where (x, y) is a policy, and the set of traits, H, is the unit disc in RZ. Let traits
be uniformly distributed on the disc. Let the parties’ preferences be given by

Vix,y) = —%(x —a)? - %(y — b2, i=1,2,

where (a', b') are interior points in the disc. We use the error-distribution
model of uncertainty; that is,

_u@Qe, ) +p-3

(!, t%) 28

>

where t = (x, ) are two policies and U is the uniform probability distribution
on the disc. Q(t!, t?) is, in this case, the segment of the unit disc on ¢'’s side of
the perpendicular bisector of the line segment ¢'£2. Thus, U(S2(', 2)) is just
a constant times the area of this segment (the constant is %, since the area of
the disc is 7).

Given two policies t! and ¢, perform the following construction, which is
illustrated in Figure 8.4. Draw the segment 112, drawits perpendicular bisector,
£, and draw the diameter, d, of H parallel to £. Let r be the distance from the
center of H to £. Clearly, for a neighborhood of ¢! and ¢, the length r is a
differentiable function of t! and t%: we write r = r(t!, £?). Secondly, the measure
of Q(s!, s?) is just a function of r, for (s}, s?) in a neighborhood of (¢!, t?): this
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Figure 8.4

follows from the fact that U is the uniform distribution on the disc. We can
therefore write, for (s!, s?) in a neighborhood of (¢!, £2),

(st P = (r(sh, s7),

where ¢ is some differentiable function of a real variable.
We now can write equations (8.6a and b) for this example, which become:

d¢ or

8.12 'oxl = ——

(8.122) & —x dr dx!

d¢ or

8.12b) b —yl=—-r——

( ) ¥ dr ay!
) d¢ or

(8.12c) a*—x*=p——
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d¢ or

8.12d) b*—y* =
(8.12d) V= e

where A and p are positive constants. In turn, these equations imply

X —a Eynt

(8.133) ﬁ = _Zz_xrl
2 2 or

X" —a _ X2

(8.13b) ﬁ = —E.
y ayz

Consider the indifference curve of r(-, t) through the point . Its slope at ¢
is exactly the r.h.s. of equation (8.13a). (We are varying the first policy, keeping
r constant, for ¢ fixed.) Now I claim that the tangent to this indifference curve
at t! is parallel to d: this is clear if one observes that the fastest way to increase
r is to move along the line ¢1¢2 in Figure 8.4 away from t'; the way to hold r
constant is to move in the direction perpendicular to ¢'#2, which means parallel
tod.

Now the Lh.s. of equation (8.13a) is the slope of the perpendicular to the
line joining (a!, b') to t!' = (x!, y!). Therefore, invoking the last paragraph,
(8.13a) says that the line joining (a', b!) to t! is perpendicular to d, which means
that (a', b') lies on the line containing t1£2. In like manner, using (8.13b), we
conclude that (a2, b?) lies on this line as well.

Hence, in any PUNE, the policies both lie on the line connecting the ideal
points of the two parties.

The equations (8.12a, b, ¢, and d) give us some more information, namely
that

(8.14a) sgn(a1 —xh = —(sgn ?)—(p)(sgn B_rl)
r ox

(8.14b) sgn(a2 —x}) = (sgn E;—(p)(sgn 8_7'2)
r ox

(8.14¢) sgn(b1 — yl) = —(sgn E;—(p)(sgn a_rl)
r ay

(8.14d) sgn(b2 2) = (sgn —¢)(sgn )
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From these equations we can conclude that ¢! and 2 lie between (a', b') and
(a?, b?). Let us observe that this is true in Figure 8.4. Here it is the case that
as r increases (locally by varying ¢! or t?), the probability of a party 1 victory
decreases, so d¢/dr < 0. A little geometric experimentation will convince the
reader that dr/dx! < 0 and dr/dx> < 0. Consequently, (8.14a and b) tell us
that a! — x' < 0 and a*> — x* > 0; a similar exercise with equations (8.14c and
d tells us that b! — y! > 0 and b* — y? < 0. Consequently, ¢! and > lie between
(a', bY) and (4%, b?).

The condition on policies that we have derived exhausts what the first-
order conditions tell us, because the information in equations (8.12) is entirely
contained in equations (8.13) and (8.14). Actually, we have only characterized
the conditions for a local PUNE; because we have not shown that the function
7 is quasi-concave in this example, it is possible that some of these pairs of
policies are not global PUNEs. We shall not pursue this dangling issue here.

While we know that the set of PUNEs is small in T x T, in the sense that it is
a manifold of lower dimension than T' x T, in this example something further
can be said: that the projection of the set of PUNEs onto the strategy space of
each party is also small. The fact that the projection of the set of PUNEs onto
the policy space of each party is a line (a 1-manifold) is due to the singularity
of this example—to wit, the uniform distribution of types. Usually, as we shall
see, when parties play on a two-dimensional policy space, the set of PUNEs
projects onto a 2-manifold in each party’s strategy space.

8.8 Conclusion

We have proposed a concept of political Nash equilibrium that is nonvacuous
when the issue space is multidimensional. We have argued that although we are
agnostic about the nature of the bargaining process among intraparty factions,
we are confident that actual political equilibria lie in the set of PUNEs. Indeed,
if a log concavity assumption holds, then PUNEs can be viewed as equilibria
where the factions in each party reach a weighted Nash bargaining solution. We
have computed the set of PUNEs for a Euclidean example, and have observed
that the set of policies played by a party in equilibrium is a fairly small set in the
policy space. This gives us hope that, although the set of PUNEs is a continuum,
it may often be fairly concentrated in the policy space.

We remind the reader that our philosophy here differs from what has been
commonly practiced in political science. The generic nonexistence of Downs
equilibrium in multidimensional policy spaces has induced many researchers
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to view political reality as one where cycling is prevalent. The existence story
for Wittman equilibrium with multidimensional policy spaces is somewhat
more optimistic, as we have shown; nevertheless, Wittman equilibria will
not exist for many models. Our response to the nonexistence of Downs and
Wittman equilibria has been to propose another equilibrium concept, for we
believe that cycling is not a ubiquitous phenomenon in political competition.
Our equilibrium concept can be justified in two ways: by viewing parties as
consisting of factions with different goals, or by viewing them as Wittman
parties that are only boundedly rational. It remains to see whether the PUNE
concept is tractable in applications, and in fact delivers equilibria.
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The Democratic Political Economy
of Progressive Taxation

9.1 Introduction

Why do both left and right parties tend to propose progressive income tax poli-
cies in democratic political competition? Some authors (for example, Young
1994) have used arguments of fairness, but such arguments are surely not in the
spirit of political economy, in which players (in this case, parties) are primarily
assumed to represent interest groups. Marhuenda and Ortunio-Ortin (1995)
note that the “the literature . . . is still very inconclusive on the connection
between progressive taxation and voting.” Snyder and Kramer (1988) analyze
the problem, and reach the right conclusion, but only under a strange con-
straint, that parties may propose only tax functions that are ideal for some voter.
Cukierman and Meltzer (1991) study the question when a Condorcet winner
exists among quadratic income tax schemes, when voters have preferences
over income and leisure, but succeed in demonstrating such existence only
under unreasonable conditions.! Moreover, it is only in a Downsian frame-
work that players necessarily propose the Condorcet winner, if there is one, in
equilibrium.

In this chapter, we assume that there are two parties, representing relatively
poor and relatively rich constituencies, and we apply the PUNE concept to
study the taxation issue. Society’s problem is to choose an income tax regime.
Since we wish to study when that regime will be progressive, we work with the
family of quadratic income taxes, where after-tax income of an individual takes
the form aw? 4+ bw + ¢, where w is the individual’s income. Using a balanced
budget constraint, and assuming that taxes are purely redistributive, we may

1. T do not wish to imply that the analysis which follows dominates that of Cukierman and
Meltzer, for they work with a class of utility functions which include leisure as an argument,
while I do not.
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view the domain of policies as two-dimensional, deriving ¢ as a function of a
and b, and hence regard a tax policy as an ordered pair (a, b). Each party must
propose a tax policy (g, b) in the political contest.

Our aim is to understand why progressive taxation is ubiquitous in democ-
racies.

9.2 The Model

Each citizen wishes to maximize her after-tax income. A type is characterized by
her income, w. Individuals supply labor inelastically—they derive no welfare
from leisure. The distribution of citizen types is given by a probability measure
F on [0, 1]. Thus maximum income is normalized at one.

A tax policy is a triple (a, b, ¢), where the after-tax income of an individual
with income w is aw? 4 bw + c. Taxes are purely redistributive, so the balanced-
budget condition is

(9.1a) /(awz + bw + ¢)dF(w) = u,

where u = [wdF is mean income, which implies

(9.1b)  c=—ap, —bu + pu,

where

(9.1¢0)  p,= /wzdF.

Thus after-tax income is
a(w? — Wy) +bw — ) + p.

Define type w’s (ordinal) utility function on tax policies as:
u(a, b, w) = a(w? — Wy) +bw — ) + p.

Henceforth we understand that tax policies are two-dimensional, denoted

(a, b).
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Let (a, b) and (d/, b') be two tax policies and define
Aa=a—d, Ab=b-V.

Then a voter of type w is indifferent between policies (a, b) and (a/, V') iff she
enjoys the same after-tax income in both, that is, iff

(9.2a)  Aa(w? — p,) + Ab(w — ) = 0.
Define the function

2 _
(9.3) o(w) = u, for w # u.
W=

It follows from (9.2a) that, for w # u, voter w is indifferent between the two
policies iff

(9.2b)  Aag(w) + Ab=0.

This tells us that, viewing the domain of policies (a, b) as R?, the indifference
curves of type w are straight lines of slope —¢ (w). The indifference curves of
type w = w are vertical straight lines.

We have thus far restricted policies only by a budget-balancing constraint.
We further assume:

Bl (i) Vw, a(w®—pu,) +bw—pu)+p>0
(i) Yw, 2aw+b>0

B1(i) says that every individual’s after-tax income must be non-negative;
B1(ii) says that after-tax income must be a nondecreasing function of income.
Thus (i) is an individual budget constraint, and (ii) is an incentive compatibility
constraint. The reader may check that the set of policies satisfying B1 is the
triangular region 7 = OUV illustrated in Figure 9.1.

Policy O = (0, 0) is total confiscation of income and redistribution to the
mean, and policy T = (0, 1) is laissez-faire (no taxation).

Define a policy (a, b) to be progressive iff it generates an after-tax income
function which is concave in (pretax) income. This is equivalent to having
a < 0. Thus progressive policies are precisely those in triangle OUT in Figure
9.1. (Strictly) progressive policies are ones for which the assessed tax is a strictly
convex function of income.
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Let us study the function ¢, illustrated in Figure 9.2.
The salient facts are

* ¢ is increasing, asymptotically to infinity, in the interval [0, w);

* ¢ is increasing, beginning at the value —oo, in the interval (u, 1];
cp(w)=0iffw=/iy;

*p(1) > ¢p(0)and p(1) < 2.

The only one of these facts I shall derive is the last one. Suppose, to the
contrary, that ¢ (1) > 2. Then, by definition of ¢, u, — 1 <2 — 2, and so
(y, <21 — 1. But u? < w, (Fhas positive variance); hence u? < 2u — 1, which
means (1 — 1)? < 0, an impossibility. Because ¢ (1) > ¢ (0), we may define a
type w* as that unique type such that w* > @ and ¢ (W*) = u,/u. Because
¢ (1) < 2, we may define a type w as that unique type such that ¢ (w) = 2. The
values w* and w are illustrated in Figure 9.2.

We next study the indifference curves and ideal points of the various types.
An individual w prefers policy (a, b) to (a', V') iff

(9.4) Aa(w? — H,) + Ab(w — ) > 0.

It follows that:

*if w < i, then Aag (w) + Ab decreases as utility increases;
e if 4 < w, then Aa¢ (w) + Ab increases as utility increases.



176 9 | Progressive Taxation

(0,2)

(0, o)

Figure 9.2

Using this observation, it immediately follows that:

Lemma 9.1

(1) O is the ideal point of {w | w < w} = W;

(2) Uis the ideal point of {w | W <w < u} = W,;

(3) Uis the ideal point of {w | u <w < /i,} = Wy;
(4) U is the ideal point of {w | /i1, <w < w*} = W,;
(5) Vis the ideal point of {w | w > w*} = Wi,

Proof (refer to Figure 9.1):

1. w € W, have indifference curves which are less steep than OU, since
¢ (w) < 2, and utility increases in the southwest direction, since w < u. Draw
an indifference line of w which intersects T; to increase utility, push the line
in the southwest direction as far as possible, while still intersecting T. One can
push the line down until it intersects J just in the vertex O, because the slope
of the indifference line is negatively sloped, and less steep than the side OU of
T. Thus O is the ideal point of any w € W,.
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2. w € W, have indifference curves which are steeper than OU, and utility
increases in the southwest direction. The same geometric exercise as described
in step 1 shows that w’s ideal point is U.

3. w € W; have positively sloped indifference curves, and utility increases in
the northwest direction. U is their ideal point.

4. w € W, have negatively sloped indifference curves that are less steep than
UV, which increase in the northeast direction. U is their ideal point.

5. w € W, have negatively sloped indifference curves, steeper than UV, and
utility increases in the northeast direction. V is their ideal point. =

We next introduce political parties. There are two, called Left and Right. For
simplicity, we assume that Left “represents” a particular citizen type w; and
Right represents a citizen type wy. We assume:

B2 (i) w; <w,and
(if) wg > w*.

Thus Left (Right) represents a relatively poor (rich) citizen.

When I say that Left “represents” a citizen type w;,  mean that Left’s militants
have the (ordinal) preferences of w;, and that Left’s reformists are endowed
with a von Neumann—Morgenstern utility function v, on tax policies (a, b),
which is consistent with w;’s (ordinal) after-tax income preferences—that is,
v; is an ordinal transform of u(-, w; ). Similarly, Right’s reformists are endowed
with a von Neumann—Morgenstern utility function v, on tax policies consistent
with wy’s ordinal income preferences.

According to Lemma 9.1, Left’s ideal policy is the point O, and Right’s is the
point V (see Figure 9.1). Types in the region (w, w*) are the “moderates,” with
ideal point U. Note, as well, that B2 implies that ¢ (w;) and ¢ (wy) are both
positive, and so both those types have negatively sloped indifference curves.

We next introduce party uncertainty about voter behavior: we shall employ
the state-space model of uncertainty. There is a continuum of states s € [0, 1],
and in state s, the probability measure of voter income is F, on [0, 1]. Both
parties share the prior that s is distributed according to a probability measure
G on [0, 1]. It is assumed that

B3 The measures F, G, and F, for all s, are equivalent to Lebesgue measure on
[0, 1]. The distribution function of F, is denoted F,, and is a continuous function
of s as well.
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Suppose Left (Right) proposes a policy t; = (a, b)(ty = (a', V')). A citizen w
prefers t; to ty iff (9.4) holds. Define Q2 (1, ty) as the set of types for which (9.4)
holds. Then Left defeats Right (by majority vote) exactly in those states s such
that

(95 F(Qt, tp) > 1.

We follow the usual convention that if a voter is indifferent between #; and
fr» she votes randomly. By the continuum assumption, it follows that distinct
policies 7, and 1, tie in state s iff F(Q(t;, t)) = 1.

Let S(¢;, tg) be the set of s such that (9.5) holds. It follows that, from the
parties’ viewpoints, Left defeats Right with probability

9.6)  m(t,, ty) = G(S(t,, ).
We have now defined the preferences of all three factions of each party. For

Left, for example, these are represented by the functions ITL (reformists), 7
(opportunists), and u(-, w;) (militants).

9.3 The Equilibrium Concepts

To review the concept of party unanimity, Left would entertain a deviation
from t; to ¢t iff

(9.7) (7 (1], tg), ulty, wp)) = (7 (¢, t), uty, wp)),

with the convention on vector ordering given in this footnote.?
Similarly, at (t;, tz), Right would entertain a deviation from t, to t iff

(98) (1= (g, tp), ulty, we)) = (1 — 7 (ty, tg), ulty, wg)).
Thus a policy pair (t;, t) is a party-unanimity Nash equilibrium (PUNE) iff

there is no t; € T at which (9.7) holds and there is no t; € T at which (9.8)
holds.

2. (x1, x2) = (y1, y2) iff x; = y; and for some i, x; > y;
(x1, %2) = (y1, y2) iff x; = y;.
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We introduce next a refinement of PUNE for the problem of the present
chapter.

Definition 9.1 (1;, ty) is a strong party-unanimity Nash equilibrium iff (¢;, t)
is a PUNE and it is false that £, = (0, 0) and 7 (#;, tz) = 1.

“Strongness” is a (very) weak refinement of PUNE. If we eliminate nonstrong
PUNE from consideration, we are saying something about the capacity of
Right’s intraparty factions to compromise in the face of almost sure calamity.
Recall that policy (g, b) = (0, 0) is a complete leveling of all incomes to the
mean. If, in a PUNE, #; = (0, 0) and 7 (#;, tz) = 1, then facing the prospect
of Left’s winning almost surely with the leveling policy (0, 0), Right does not
deviate. Strongness says that, facing such a prospect, Right’s opportunist and
reformist factions will be able to persuade the militant faction to deviate to a
policy with a positive probability of defeating (0, 0).

Let us remark about Condorcet winners. Suppose it is the case that

Vs, F(W,U W, UW,) > 1.

(Refer to Lemma 9.1 for notation.) Then W, U W5 U W, is a majority coalition
in all states, all of whose members have ideal point U € T. It follows that U is
a Condorcet winner in T it defeats all policies except itself, for sure. Thus it
would be a Downsian equilibrium for both parties to propose U. It would as
well be a PUNE for both parties to propose U, since neither opportunist faction
would be willing to deviate: at (U, U), each party has probability one-half of
victory, and under any unilateral deviation, the deviating party has probability
zero of victory. Nevertheless, in a PUNE, it might be the case that neither party
proposes U.

9.4 Analysis of Party Competition

We could analyze the PUNEs in this model using the differential character-
ization of PUNEs of Chapter 8. Instead we undertake an entirely geometric
analysis, made possible by the linearity of citizen indifference curves on the
policy space.

Let uslook at a typical strategy pair that might arise in the game between our
two parties. Denote henceforth by L the policy (a, b) announced by Left, and by
Rthe policy (@, ') announced by Right. Examine Figure 9.3, which reproduces
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Figure 9.3

the domain 7, with the two hypothetical proposals, L and R. Assume that w;
prefers L to R, and wy, prefers R to L.

In Figure 9.3, the slope m of LR is positive. We know from section 9.2 that type
w is indifferent between L and R iff ¢ (W) = —m. But this determines a unique
W, illustrated in Figure 9.4, which is an amended reproduction of Figure 9.2. It
now follows, from examination of (9.4), that the set of types preferring L to R is
[0, W), and the set of types preferring R to L is (w, 1]. These sets are illustrated
by the heavy bars labeled “L” and “R” in Figure 9.4.

In Figure 9.3, I have also drawn an indifference curve for voter w; through
the point L, and an indifference curve for voter wy through the point R. The
arrows indicate the directions of increasing utility.

Now imagine, in the situation of Figure 9.3, that Left is considering deviating
from L, locally, to a point in the adjacent shaded triangle, while Right is fixed at
R. Any such deviation is preferred by Left’s militants, since the shaded triangle
lies on the preferred side of w,’s indifference curve at L. Any such deviation
also would reduce the steepness of the line LR; but according to Figure 9.4,
that means it would increase the set of types who prefer the Left policy to R,
and hence must (weakly) increase the probability that Left defeats R. Hence,
(L, R) cannot be a PUNE: both militant and opportunist factions of Left would
agree to deviate from L into the shaded region.

Let us define the set of policies below w; s indifference curve at L and above
the line LR as the cone of attractive policies for Left at L. Similar analysis shows
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that the shaded cone at R is the cone of attractive policies for Right at R—that
is, the set of policies which the factions in Right would deviate to at R, given L
fixed. A pair (L, R) is a PUNE only if the intersection of each cone of attractive
policies with T is empty.’

We shall use this technique in the rest of this chapter. The analysis is simple
by virtue of the pleasant fact that voter indifference curves in the policy space
are straight lines, and so it is easy to identify the cone of attractive policies for
a party at a pair of proposals.

Before proceeding further, we state a useful general principle.

Lemma 9.2 Let (L, R) be a policy pair in T x T. A local deviation to one side
of LR from L by Left increases Left’s probability of victory iff a local deviation by
Right from R on the same side of LR increases Right’s probability of victory.

3. This is only an “only if” statement. It is possible that, locally, neither party wants to deviate,
but that there is a distant deviation that is attractive for one party.
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Proof:

The key observation is that when Left or Right deviates from L or R on the
same side of LR, while the other party remains fixed, they change the slope
of LR in opposite ways: for example, if Left’s deviation renders LR steeper,
then Right’s deviation renders LR less steep. The lemma now follows from a
consideration of what happens to the sizes of the coalitions of types favoring
each party (see, for example, Figure 9.4). =

And an obvious fact:

Lemma 9.3 If (L, R) is a PUNE, then w; weakly prefers L to R and wy weakly
prefers R to L.

Proof:

Suppose, to the contrary, that w; strictly prefers R to L. Then Left can deviate
by moving along the line LR from L toward R: this leaves the probability of
victory unchanged and increases the welfare of w;, so both opportunists and
militants will support the deviation. =

Our first task is to prove the existence of strong PUNE.* To this end, we
assume:

B4 Thereis a set S of states, with G(S) > 0, such that
seS=Fw) < %

In particular, if B4 did not hold, the Left could win with probability one against
any Right proposal by proposing its ideal point, O! It follows that B4 is a
necessary condition for the existence of a strong PUNE. Theorem 9.1 says it
is, as well, sufficient.

Theorem 9.1 If Bl, B2, B3 and B4 hold, then there exist strong PUNE.

Proof:

1. Choose L € OU and R € UT, such that the slope, m, of LR is negative and
close in absolute value to 2, as illustrated in Figure 9.5: in particular, choose L to

4. It is trivial to note that L = O and R =V is always a PUNE, for the militants in each party
will refuse to deviate from their ideal points. But in general, this pair of proposals is not a strong
PUNE (that is, Left may win with probability one).
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Figure 9.5

be close to O. The type w who is indifferent between L and R has ¢ (w) = —m;
it follows from Figure 9.2 that w € (w, ). Hence the coalition which votes Left,
at these proposals, is [0, W).

2. For any small € > 0, we can choose (L, R) so that the slope of LR is
sufficiently close to —2 that the coalition who vote Left is precisely [0, w + €).
By B4 and B3 it follows that there is a set of states of positive G-measure such
that F,( + €) < 3. Therefore 7 (L, R) < 1.

3. From Figure 9.2, it follows that Left can increase the size of the Left
coalition, and hence weakly increase the probability of victory, by deviating
from L to the left of LR, for such a move increases the absolute value of the
slope of LR. By Lemma 9.2, Right can weakly increase its probability of victory
by deviating from R to the left of LR. Moreover, a deviation by Left from L
to the right of LR, and below w;’s indifference curve through L, will decrease
the size of the Left coalition, since L is close to O (again, examine Figure 9.2).
Since (L, R) < 1, it will therefore decrease 7, since F, and G are equivalent
to Lebesgue measure. It follows that Left’s cone of attraction at L is the lower
shaded region in Figure 9.5, and further, that there are no deviations in T which
are attractive for Left. The last clause uses the fact that L is close to O, so the
points to the right of LR and below w,’s indifference curve are all close to O.

4. To calculate Right’s cone of attractive policies at R, note that if Right
deviates from R to any point R’ on the segment RV, the slope of the line LR’ is
either negative and greater in absolute value than the slope of LR, or positive
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and less in absolute value than u,/u. It follows (consult Figure 9.2) that the
type w who is indifferent between L and R’ lies always in the interval (w, w*)
and hence the Right coalition will be (W, 1], which is always smaller than it is
at R. Without loss of generality, these are the only deviations from R that are
above wy’s indifference curve at R and to the right of LR that we need consider
(for if there is any attractive deviation in that region, there must be one on the
segment RV). It follows that Right’s cone of attraction at R is the upper shaded
region in Figure 9.5, and there are no attractive deviations for Right in 7.

5. It follows that (L, R) is a PUNE.
6. It immediately follows that (L, R) is a strong PUNE. =

We next introduce the only distributional assumption of our analysis:
B5 F.(u) > % almost surely.

B5 is reasonable if median income is less than mean income, for it says that
in almost all states, more than half the voters have income less than the mean.
We now state our main result:

Theorem 9.2 If Bl, B2, B3, and B5 hold, then in all strong PUNEs, both Left
and Right play progressive policies.

In other words, the distributional assumption B5 and the (weak) refinement
notion enable us to deduce the ubiquity of progressive tax proposals in political
competition between Left and Right.

Some readers may find the introduction of the “strong PUNE” refinement,
and hence the statement of Theorem 9.2, inelegant. We can, in fact, avoid that
terminology, if we wish, as follows:

Corollary9.1 LetBI, B2, B3, and B5 hold. Then, in any PUNE, with probability
one, a progressive policy wins the election.

Proof:

Theorem 9.2 says that the only PUNE in which a party does not propose a
progressive policy is one in which Left proposes (0, 0) and wins with probability
one. But (0, 0) is a progressive policy. The claim immediately follows.’

5. This circumlocution for avoiding the necessity of introducing the strong PUNE concept is
due to Klaus Nehring.
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We now prove Theorem 9.2.

Step (1) There is no strong PUNE where Right plays a regressive policy.

Suppose Right plays a policy R in triangle OTV (see Figure 9.1), but not
on the line OT (that is, R is regressive). Let Left play L = O. I claim Left wins
with probability one. For the slope of LR is positive, and so the type, w, who
is indifferent between L and R has ¢ (w) negative, which, by Figure 9.2, means
w > u; thus, by B5, Left wins with probability one. It follows that any PUNE
where Right plays R must have Left playing O, because O is ideal for both Left’s
militants and opportunists. The conclusion follows.

Therefore, the remainder of the proof shows that Left never plays a regressive
policy in a strong PUNE.

Step (2) Thereisno PUNE where either party plays a policy which is interior
in 7.

1.If (L, R) isa PUNE and L € interior T, then slope LR = —¢ (w;).

Suppose, to the contrary, that slope LR # —¢ (w;). Let £ be w;’s indif-

ference line containing L. Then ¢ and LR do not coincide. The militants of
Left strictly prefer any policy on line LR and below £ (that is, on the O side
of £), and Left’s opportunists are indifferent to such a move (moving along
the line LR leaves the probability of victory constant). Hence (L, R) is not
a PUNE.

2.If L € interior T, R € boundary 7, and slope LR = —¢ (w,), then (L, R)
is not a PUNE.

By step 1, R € OU U UT. We know that the slope of LR lies between the
slopes of OU and UV, since w; € [0, W). Suppose that R € UT. It follows that
O lies below (to the left) of LR. Hence Left’s militants wish to deviate below LR.
Therefore such a deviation must decrease Left’s probability of victory (or this
would not be a PUNE). Therefore, by Lemma 9.2, a deviation to the right of
LR increases Right’s probability of victory. But Right’s militants also like this
deviation, since V lies above LR; so Right should deviate down the line RV.
Hence (L, R) is not a PUNE, a contradiction.

Next, suppose that R € OU. Then the facts about LR’s slope imply that LR
lies above O and below V. The reader may now replicate the reasoning of the
preceding paragraph.

3.IfL, R € interior T and slope LR = —¢(w;), (L, R) is not a PUNE.
This step is easier than step 2, and is left to the reader.

4. We have now disposed of the possibility of a PUNE where L is interior. Ex-
actly symmetric arguments show there can be no PUNE where R € interior 7.

Step (3) There is no strong PUNE where Left plays a regressive policy.
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Figure 9.6

Consult Figure 9.6; the line through D and T is an indifference curve of wy.
We know that both parties play on the boundary of 7 in a PUNE. Any strong
PUNE in which Left plays a regressive policy must have Left playing on the
segment OD, for if Left played in the triangle DV'T, then Right would be playing
aregressive policy, because we know that Right weakly prefers its policy to Left’s
in a PUNE (Lemma 9.3). But step 1 above has shown that there is no strong
PUNE in which Right plays regressive.

Consequently, any strong PUNE in which Left plays regressive looks like the
pair {L, R} in the figure. At this play, we know that the 7 decreases as Left
deviates from L toward O—for otherwise, Left would so deviate. Therefore 7
increases as Left deviates from L toward D. Consequently, 1 — 7 increases as
Right deviates from R toward T' (Lemma 9.2). But this deviation is attractive
to Right’s militants, as well, and so {L, R} is not a PUNE.

This completes the argument. =

9.5 Calibration

According to the 1990 U.S. Census, mean household income in the United
States was $30,900 and the standard deviation of household income was



9.6 | Conclusion 187

0.2 0.4 0.6 0.8 1.0

Figure 9.7 The empirical function ¢ for the United States

$34,000.° Let us take maximum household income, for all effective purposes, to
have been $200,000 in 1990. Then, normalizing maximum income at unity, we
compute that & = .1545 and ., = .05277. The empirical function ¢ is graphed
in Figure 9.7.

We calculate that w = $27,500 and w* = $68,300. Our assumption B2 re-
quires that Left represent a voter whose income is not greater than $27,500, and
Right a voter whose income is not less than $68,300. Given that mean income is
$30,900, these are reasonable assumptions—if not for the Democrats and Re-
publicans in the United States, then perhaps for Labour and the Conservatives
in the United Kingdom.

Our assumptions B5 and B4 say that it is always the case that at least one-half
the voters have an income less than $30,900, but there is positive probability
that fewer than one-half the voters will have an income less than $27,500.

9.6 Conclusion

Let me summarize the model. There is a population with a distribution of
income, who must vote on a redistributive tax policy, which is limited to

6. I thank my colleague Marianne Page for computing these statistics.
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be some quadratic function of income. Voters supply labor inelastically—
so income is fixed, for each voter. There are two parties, one representing a
relatively poor voter, the other a relatively rich voter. Within each party, there
are three factions: reformists, militants, and opportunists. Parties are unsure
about the distribution of voter types.

Call the policy space T. Each faction of each party has (complete ) preferences
on T x T, that is, on pairs of policies that it and its opposition can propose.
All three factions in a party must agree for the party to prefer one element in
T x T to another: this leads to each party’s having a preference quasi-order on
T x T—it is the intersection of the preference orders of its three factions. A
political equilibrium is a Nash equilibrium where each party maximizes with
respect to its quasi-order.

The main result says that if the majority of voters, in all states, have an income
less than the mean income, then in any political equilibrium, both parties
propose progressive tax policies.

Perhaps the assumption one would most like to weaken is the inelasticity of
labor supply. Do the results remain true if individuals experience disutility from
labor? One can prove the following. Suppose that individuals have preferences
over income and leisure, such that the labor supply elasticity with respect to the
wage is uniformly (for all incomes and all individuals) less than some number
8 > 0. Consider, now, a sequence of economies, letting § approach zero. For
8 sufficiently small, strong PUNE exist, and in all of them, the policies are
arbitrarily close to being progressive. (The proof goes by showing that, as §
gets small, the feasible set of policies converges to the triangle OUV and the
indifference curves of individuals become arbitrarily close to being straight
lines. We then use the results established above to get the limit result.) Is there
a stronger result, saying that both parties will propose progressive policies for
8 not close to zero? I expect not. If the labor supply elasticity of the high-wage
agents is sufficiently large, it does not seem that progressive policies would
necessarily be advocated by either party.
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10.1 The Historical Issue and a Model Preview

The framers of the U.S. Constitution extended suffrage only to (male) property
holders because they believed that, were the poor to be given the vote, they
would soon expropriate the rich. Property owners, it was believed, would
behave “responsibly.” If all citizens have the vote, and median wealth is less
than the mean (always true of actual wealth distributions), then a majority of
voters (namely, those whose wealth is less than the mean) should prefer a tax
rate of unity, fully redistributing all wealth to the mean.

Nevertheless, universal suffrage has not engendered the expropriation of the
rich through the tax system, and a variety of reasons have been offered in ex-
planation, including the following: (1) voters recognize that there would be
adverse dynamic effects to expropriating the rich, who have scarce produc-
tive talents which would cease to be supplied were their holders taxed too
harshly, and all would consequently suffer (trickle-down); (2) many voters
whose wealth lies below the mean entertain the hope that they or their chil-
dren will someday become richer than the mean, and they shun high tax rates
for fear of hurting their future selves or children; (3) even if there would be
few dynamic effects from high taxation, as described in (1), the rich convince
the citizenry that there would be, with propaganda disseminated through the
media, which they control; (4) the citizenry believe that the rich person—and
indeed everyone—deserves the wealth he/she receives, and hence high tax rates
would be unethical. Marxists have called explanations (3) and (4) instances of
“false consciousness.” Putterman (1997) has recently tried to assign degrees of
importance to the explanations here suggested, and some others.

In this chapter, I propose another possible explanation for the nonexpro-
priation of the rich in democracies, which depends upon there being party

189
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competition on a policy space with two dimensions, the first being taxation,
the second some noneconomic issue such as race, religion, nationalism, or
“values.” The proposal I shall offer has nothing to do with incentives and
trickle-down: were wealth simply manna from heaven, which fell unequally
on the population, but could be redistributed, the argument I present would
still hold.

The model behind the view that those with wealth less than the mean would
vote for a tax rate of unity on wealth presupposes that political competition is
unidimensional. But, indeed, political competition, in at least the United States
and Europe, is surely at least two-dimensional. Poole and Rosenthal (1991)
have shown that roll-call votes in the U.S. Congress, going back to 1789, are best
explained by a two-dimensional model: knowing the position of congressmen
on taxation and race (slavery before the Civil War and integration/civil rights
after), one can explain 85% of the variance in roll-call votes, and adding a
third dimension explains very little more. Laver and Hunt (1992) present em-
pirical evidence that democratic politics are multidimensional in a set of over
twenty countries. Somewhat more schematically, Kitschelt (1994) argues that,
in the main European countries, politics can be understood, in the past thirty
years, as being two-dimensional, over redistribution and a “communitarian”
dimension, whose poles he labels “authoritarian” and “libertarian.” The au-
thoritarian voter wants more police, more defense spending, illegalization of
abortion, tough antidrug legislation, the death penalty (in the United States),
and is proclerical. The libertarian voter wants the respective opposites, and
is anticlerical. Kitschelt argues that the “communitarian” dimension is quite
orthogonal to the economic dimension: blue-collar workers in manufacturing
tend to be redistributionist and authoritarian, while some professional workers
are antiredistributionist and libertarian. On the other hand, many poor, mi-
nority voters are redistributionist and libertarian, while the “petty bourgeoisie”
are antiredistributionist and authoritarian. Kalyvas (1996) and Przeworski and
Sprague (1986) together form a convincing argument that, in at least the pe-
riod 1880-1940, both religion and redistribution were important dimensions
in European politics.

Suppose, then, that voter preferences are defined over wealth and some non-
wealth issue—for concreteness, let us call the second dimension “religion.” The
citizenry’s preferences are characterized by a joint probability distribution over
tax-religion policy space. Suppose there are two political parties with policy
preferences: one party represents constituents who are poor and anticlerical
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(the Labor Party), and the other represents constituents who are rich and pro-
clerical (the Christian Democratic Party).

Given this political institution, here is a rough intuition for why Labor might
not optimize in the electoral contest by proposing a tax rate of unity. Suppose
that many poor voters are anticlerical, but there are a significant number of
proclerical poor, and that richer citizens are mostly proclerical, but there are a
significant number of anticlerical voters among them. Indeed, there may be a
substantial number of voters, among the poor, who are so proclerical that they
will not vote Labor even if Labor proposes a tax rate of unity, as long as the
Christian Democrats propose a more proclerical policy than Labor. Thus Labor
would not maximize the expected welfare of its poor, anticlerical constituents if
it proposes a tax rate of unity, assuming it remains “principled” on the religion
issue. It may well be in the interest of Labor’s constituents to propose a tax rate
less than one, thereby winning the votes of some richer citizens who are quite
anticlerical. This, Marx might well have said, is an instance of religion’s being
the opium of the people—that is, the poor, proclerical voters are acting against
their “real” interests. (If one thinks of the noneconomic issue as race, which is
perhaps the most appropriate one for the United States, one might paraphrase
Marx by arguing that racism is the opiate of the (white) masses.) But we are
not here inquiring into why citizens have these preferences. The essential point
is that, if voters care deeply about some noneconomic issue, and have widely
disparate views on that issue, it does not follow that all those whose wealth is
less than the mean will necessarily support a party which proposes a tax rate
of unity.

We shall, in this chapter, study party-unanimity Nash equilibrium in the
game between these two parties. The substantive question is: is there a rea-
sonable condition on the distribution of voter preferences (or traits), such that
the equilibrium in the electoral contest between a Labor Party that represents a
poor anticlerical voter and a Christian Democratic Party that represents a rich,
clerical voter entails Labor’s proposing a tax rate which is significantly less than
one?

In the process of answering the posed question, we answer another question
as well. Kitschelt has argued that the noneconomic dimension (what he calls the
“communitarian” issue) has increased in importance in Western democracies
in the postwar period. Clearly, in a two-dimensional model, as the noneco-
nomic issue becomes more salient for voters, we can expect both components
of the equilibrium policies to change. Is there any reason to believe that, as



192 10 | Why the Poor Do Not Expropriate the Rich

the importance of the noneconomic issue increases, the equilibrium tax poli-
cies proposed by the Labor Party should decrease, as opposed to increasing, or
moving around nonmonotonically? We can interpret the main results as an-
swering this question affirmatively, assuming that a stipulated condition on the
distribution of voter traits holds.

We finally investigate whether the stipulated condition holds for the distribu-
tion of traits in the U.S. and British electorates, where we take the noneconomic
issue to be, in one case, racial attitudes, and in another, communitarian atti-
tudes. Some tentative predictions about U.S. and British political behavior are
drawn from the model.

10.2 The Politico-Economic Environment

Let the space of citizen traitsbe H = W x R, with generic element (w, a), where
W = [w, w] is the set of wealth (or income) levels, and R is the set of religious
views, taken to be the real number line. The (indirect) utility function of a
citizen with traits (w, a) over policies (¢, z), where t is a uniform tax rate on
wealth or income, and z is a religious position of the government, is given by
v(t, z; w, a). The population is characterized by a probability distribution on
H. There are two parties: Labor, or Left, represents a constituent with traits
(w}, a;) and the Christian Democratic Party, or Right, represents a constituent
with traits (wy, ag). We assume that w; < < wp, where u is mean population
income. Each party, i, proposes a policy pair T/ = (¢!, z'). We suppose there is
a stochastic element in these elections, so that, given a pair of policies (!, 72),
there is a probability that Left will win, denoted 7(t!, 7). The function 7 is
known to both parties. Then the payoff functions of the reformists in the Left
and Right parties are:

', o) =n@!, v wy,ap) + A — m (!, tH)v(T% wy, ap)
(10.1)
2(t!, o) = (7!, t)v(rh wy, ag) + (1 — 7 (T, TH)IV(T?; Wy, ag).

We derive the function v from the direct utility function. A citizen with re-
ligious view a has a von Neumann—Morgenstern utility function u(x, z; a) =
(1 — a)x — a/2(z — a)?, where x is after-tax wealth and z is the government’s
religious policy. The number « in the interval [0, 1] shall be called the salience
of the religious issue; it has the same value for all citizens. The indirect util-
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ity function of voter (w, a) at policy (t, z), where ¢ is a proportional tax
rate, is

(102)  v(t,zzw,a) =1 —a)((1 — Ow+ tpu) —a/2(z — a)%,

where u is mean wealth.

Before proceeding with the two dimensional analysis, let us study the uni-
dimensional case, which is induced when o = 0. This is exactly the model of
Example 2.1, which was further pursued in section 4.1. Proposition 4.1 showed
that the unique Wittman equilibrium consists in Left’s proposing a tax rate of
unity and Right’s proposing a tax rate of zero. Moreover, (0, 1) is the unique
PUNE when « = 0, because the probability of victory is invariant with respect
to policies in this game, as long as #; > 5. Thus in the unidimensional model,
where the salience of religion is zero, we get polarized tax policies.

We proceed to the two-dimensional analysis. From (10.2), we may compute
that voter (w, a) prefers policy 1, = (f;, z;) to Ty = (g, 2), iff

o (1 —a)At(w— ) -

(10.3a) a if Az>0,
aAz
1—a)At(w —
(03b) z4 LTOAMWZW e AL <o,
aAz
(103c) w<pu if Az=0 and Afr <0,
(10.3d) w>u if Az=0 and At>0,

where Az=z; —z;,, At =ty — t;,and 2 = (z; + z) /2.

We shall assume that the population distribution of traits is given by a density
function h(w, a) = g(w)r(a, w) on H, where g(w) is a density on W and,
for each w, r(a, w) is a density on R. The interpretation is that the wealth
distribution of the population is given by g, and the distribution of religious
views at wealth w is given by r(a, w). It will be important that wealth and
religious views are not independently distributed.

We employ the state-space model of uncertainty. A random variable, s, which
is uniformly distributed on [0, 1], determines the distribution of traits among
voters on election day. We assume that, in state s, the probability distribution
of voters is H, with a density function given by

(10.4) h,(w, a) = g.(w)r(a, w);



194 10 | Why the Poor Do Not Expropriate the Rich

the interpretation is that s affects only the wealth distribution of the active
electorate, but a representative sample of religious views shows up at each
wealth level at the polls in every state of the world.

The coalition of voters €2(t;, Tz) who prefer t; to 7y is given by (10.3). Thus
the measure of voters who prefer t; to i if, for instance, Az > 0, is, from
(10.3a):

=, (1—a)At(w—p)

H—a
(10.5)  H(Q(t;, z) = / / g(w)r(a, wyda dw.
W J—oo

Let @ (z, s) be the distribution function for religious views in state s; that is,

D(z, ) =/ /Z gw)r(a, wyda dw.
W J—oo

We assume:
C1 Forany z, ®(z, 5) is strictly decreasing in s.!

If the rich tend to be more religious than the poor, and the fraction of rich
voters increases with s (as when high s means foul weather on election day),
then C1 will surely hold.

Policy 7; defeats 7y in just those states s that H.(Q2(z;, 7)) > % (We needn’t
worry about what happens if H(Q2 (7}, 73)) = %, an event with zero prob-
ability.) It follows from C1 and (10.5) that H(Q (7}, 7)) > % just in case
s < s*(t;, Tg), where s*(t;, Tg) is defined uniquely by

A—a)At(w—p)

A
(10.6) / / ge(w)r(a, wyda dw = %
W J—oco

Thus the probability that 7, defeats 7, is the probability of the event {s < s*},
which is s*(t;, 7,), since s is uniformly distributed on [0, 1].

1. C1 plays the role that the assumption “m; is a strictly decreasing function of s” played in
Example 2.1.
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Letting 7 (7;, Ty) be the probability that r; defeats t, where z; > z;, we have

1 ifH (Q (1}, 7p) > 3
(107)  m(r,R) =4 s*(r, 1) iTHW(Q(1, ) =1
0 ifHy(Q (1, 7p)) < 3

More completely, we may write the function 7 (7}, ) for all possible cases,
using (10.3), as follows. Let A be Lebesgue (uniform) measure on [0, 1]. Then

Z+ (1—a)At(w—p)

A{s| [y [ “ g(w)r(a, w)dadw > i ifAz>0,
A({s| [y fzo_:(l—a)aAAtiwfu) g&w)r(a, wyda dw > 1}) if Az <0,
m(t, tR) =4 A({s| [ g (w)dw > 3}) ifAz=0 and Ar<0,

A{s | ffgs(w)dw >1) ifAz=0 and Ar>0,

if Az=Ar=0.

1
2

It may be verified that, since g,(w) is continuous in s and w, and r(a, w) is
continuous, the function 7 is continuous except on the subset V= {Az=0=
At} of the domain T x T, where T = [0, 1] x R is the policy space.

It is easily verified that the functions IT% and I’ are everywhere continuous
on T x T; the discontinuity of 7 on the subspace V of the domain, defined
above, turns out not to matter, since on V, V(T Wy a) = v(T;3 W, a) for any
(w, a).

10.3 Analysis of PUNEs

For each positive value of the salience o, we can define a political game G, =
(a, (ap> wp), (ag, Wg)> &> 75 {&)» v) between the two parties. Importantly, in
game G, all citizens have the religious issue salience . Our strategy will be to
study the PUNE:s of this game as « approaches one. Denote a typical PUNE for
the game G, by ((t; (a), z; (@), (tg(c), zg(e)). G, is the unidimensional game
where citizens care only about the religious issue.

We introduce a condition:

C2 The mean wealth of the cohort of voters with the median religious view
in all states is greater than mean wealth, u, of the population.
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We next introduce two definitions:

Definition 10.1 Let a(s) be the median religious view in state s. For any § > 0,
we say uncertainty is less than § iff there is a number v such that, for all s, a(s)
lies in a § interval around v.

The second definition is a refinement of PUNE.

Definition 10.2 Let € be a (small) positive number. A policy pair ((f, z;),
(tg> zg)) is an €-PUNE in the game § if it is a PUNE and there is no deviation
by either party at which the party would win with probability one, and that
would cost its militants less than € in utility. (For party L, for example, there
exists no (t, z) such that w (¢, z, ty, zz) =1 and VL(tL, zp) — vi(t,z) <€)

Restricting our gaze to €-PUNEs, for small €, is saying that militants will
not be able to hold out with extreme positions if a very small change in policy
can guarantee the party’s victory. If a policy is very close to the militants’ ideal
point, then small changes will not cause the militants to lose much utility.

Finally, we call a PUNE nontrivial if neither party wins with probability one.

We shall show that if C2 holds, then for « sufficiently close to one, party
L proposes a zero tax rate in all nontrivial e-PUNEs of G, for € sufficiently
small. Thus if religion is sufficiently salient, then the L party plays the least
redistributive economic policy. Finally, we show that nontrivial e-PUNE:s exist
in these games, so that the result is not vacuous.

Let (z;(1), zz(1)) be any PUNE in the unidimensional game G, and let &
be the mean income of the citizen cohort who have precisely the median value
of the religious trait in the state s*(z; (1), zz(1)). We state:

c2* For all nontrivial PUNEs in the game G,, we have

(1 — wp)Az(D)

10.8 T
(10.8) T — > 26, —ap)

>

where Az(1) = zx(1) — z;(1).

Our line of argument is as follows. All proofs of propositions in this section
are presented in section 10.5.
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Proposition 10.1 Let v bein the interval (a;, ag). Suppose that for all s, | a(s) —
v |< 8. Let y > 0. Then for all € sufficiently close to zero, if (z, zy) is a nontrivial
€-PUNE of the game G, and if § is sufficiently small, then z — z;, = Az < y.

This proposition says that if uncertainty is small, then for arbitrarily small
€ > 0, e-PUNE:s of the one-dimensional game §; must have the two parties’
playing (religious ) policies very close to each other.

Proposition 10.2 Fix € > 0, and let {((t; (), z; (), (tg(c), zz(@))} be a se-
quence of nontrivial e-PUNEs in the games G, and let lim,_, | z; () = z;(1)
and lim,,_ | zp(a) = zx(1). Then (z;(1), zx(1)) is a nontrivial e-PUNE in the
game G,.

Proposition 10.3 Ifuncertainty is small and C2* holds, then for all « sufficiently
close to one, t; (o) = 0.

Finally, we have:

Theorem 10.1 If uncertainty is small, condition C2 holds, and o is sufficiently
close to one, then for € small, in any nontrivial e-PUNE of the game G ,, t; (o) = 0.

Finally, we prove that Theorem 10.1 is not vacuous:

Theorem 10.2 Let uncertainty be small and condition C2 hold. Then, for all o
close to one, and for € small, e-PUNE:; exist in the game G,,.

If we prove these propositions, we will have shown that, if there is a noneco-
nomic issue which is sufficiently important to voters, if parties represent con-
stitutents who have preferences over taxation and the noneconomic issue, and
if assumption C2 holds and uncertainty is small, then in all e-PUNE:s, the tax
policy of the Left party will be significantly less than unity. (We remarked ear-
lier that when « = 0, the Left always proposes a tax rate of one in equilibrium:
so as o increases, the tax rate eventually decreases to zero.) The result is striking
because it may simultaneously be true that the ideal tax rate for the majority
of the population, in all states, is unity. This “paradox” is due to the structure
of political competition, which is party competition, in which the different

2. We can ignore tax rates in the game Gy, since they are irrelevant there.
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dimensions of policy cannot be unbundled. Although the ideal tax rate for
the majority of a population may be unity, that tax rate will not be observed
in equilibrium, even when one party represents (a subconstituency of) that
expropriation-desiring majority.

I will try to give some intuition for how condition C2 drives our result. If
« is close to one, then the game G, is essentially a one-dimensional game
over religious policy. If uncertainty is small, then the median religious view
varies little across states. In an equilibrium where both parties win with positive
probability, both parties must therefore play a religious policy close to that
approximately constant median religious view. We may even say that the cohort
of the population who hold approximately the median religious view comprise
the decisive voters. But if that cohort’s wealth is greater than mean population
wealth, as condition C2 states, then their ideal tax rate is zero. Competition
forces Left (and Right) to propose a tax rate of zero, to attract the decisive
cohort. Those who may object to some slippage in this argument should read
the proofs.

We may apply exactly the same analysis to determine when Right parties (who
represent rich, religious voters) will propose high tax rates. The key condition
now turns out to be

(wg — 1) Az(1)

C3* _*_ .
(C3") e —pu< 2zx(1) —ap)

Note that the r.h.s. of (C3*) is negative, so (C3*) will be satisfied if:

C3 Uncertainty is small, and for all states, the mean wealth of the cohort of
voters with the median religious view is less than mean population wealth.

Under these conditions, when « is sufficiently close to one and € is small,
Right will propose a tax rate of unity in all nontrivial e-PUNEs.
10.4 Empirical Tests?
For the United States, I suggest that “race” is the prominent noneconomic

issue. Using the National Election Surveys (NES), we computed whether the

3. I thank research assistants Woojin Lee and Humberto Llavador for carrying out the data
analysis in this section.
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average income of voters who hold the median view on the race issue is greater
than mean population income—to see whether condition C2 holds. Among
the many questions asked in these surveys is a “thermometer” question on
“Blacks.” Respondents are asked to choose a number between 0 and 100 telling
how “warmly” or “favorably” they feel about the issue with 100 the warmest
possible. In the question we used, the issue was simply stated as “Blacks.” The
results for 1974—1994 are presented in Table 10.1.

Not all respondents in the NES are voters; in particular, the respondent is
asked if he voted. We took the mean population income (@) to be the mean
reported income of all respondents in the survey (column 1 of Table 10.1).
Column 2 of the table gives the mean income of voters (which we do not use
in our statistical test). Column 4 gives the median thermometer value of all
voter responses on the “Black” issue, and column 3 gives the mean income
of this median cohort (). It is evident that i > u: in fact, using a central-
limit-theorem test, we computed that for the four election years from 1988

on), it > u at the .999 significance level.

Table 10.1 Black issue (1974-1994)

Mean Mean Mean Value of Std. dev.  Std.dev. Std. dev.

income income income black issue for income income  income
Year population voters  cohort median voter® population  voters cohort
1974  $12,730  $14,296 $15,043 65.07 $9,745 $10,104  $10,572
1976 $14,628  $15,929 $17,964 61.08 $10,719 $11,051  $11,774
1980 $20,955 $22,729  $23,357 64.46 $15,041 $15,236  $15,792
1982 $22,734  $24,482 $25,054 63.7 $15,959 $15,905  $12,937
1984  $25,402  $27,911 $29,458 65.01 $18,806 $19,375  $19,715
1986  $28,412  $31,896 $33,089 67.37 $20,439 $21,143  $20,860
1988 $29,927 $33,828 $37,597 62.92 $22,350 $23,170  $24,157
1990 $31,262 $35,977  $38,233 71.31 $23,980 $24,575  $24,810
1992 $35,751 $39,567  $40,277 65.57 $26,836 $27,209  $26,479
1994  $37,727  $43,263  $46,087 64.33 $27,864 $28,713  $31,733

a. Range [0, 100], where the higher the number the more favorable the agent feels toward black
issues.
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Table 10.2 Salience of values issue, U.S. electorate

Year Salience
1974 0.312
1976 0.331
1980 0.397
1982 0.539
1984 0.605
1986 0.921
1988 1.236
1990 0.929
1992 0.595
1994 2.109

It is not surprising (compare columns 3 and 2 of Table 10.1) that the mean
income of voters is greater than the population mean income. But it is not
this fact alone which explains our result, since we note that, in every year, the
mean income of the median cohort of voters is greater than the mean income
of voters, as well.

Regarding the salience of noneconomic issues for the American electorate,
George Gallup (of the Gallup Poll) says: “[Americans in 1995] are more con-
cerned about the state of morality and ethics in their nation than at any time in
the six decades of scientific polling.”* We attempted to test whether the salience
of noneconomic issues has been increasing, as follows. The National Election
Survey asks each respondent to list the three most important issues, in his view.
There are hundreds of acceptable answers to this question, coded in the NES.
We coded these issues as “economic issues,” “values issues,” or “other issues,”
and defined the salience of values, for a cohort, as the number of values issues
mentioned divided by the number of economic issues mentioned in the answer
to this question. Table 10.2 gives the salience rate, so computed, for the election
years 1974-1994.

Evidently Gallup’s view is borne out: never, in the preceding twenty years, was
the salience of values issues higher than in 1994. In fact, the salience of values

4. The Economist, November 11-17, 1995, 29.
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issues had been rising steadily during this period in the United States, except
for a decline in the period 1988-1992, roughly corresponding to a recession.

The British Social Attitudes Survey is the annual counterpart, in the United
Kingdom, of the U.S. General Social Survey. In 1993, the BSAS asked a series of
questions designed to ascertain the respondents’ views on the authoritarian-
libertarian dimension. The respondent was asked to mark his degree of agree-
ment, on a scale of one to five (strongly agree, agree, neither agree nor disagree,
disagree, strongly disagree) with the following statements:

(a) It is right that young people should question traditional British values;

(b) British courts generally give sentences that are too harsh;

(c) The death penalty is never an appropriate penalty;

(d) Schools should teach children to question authority;

(e) There are times when people should follow their conscience, even if it
means breaking the law.

It is important to note that we do not have information on voters in the
British data, only on the general population.

We coded the answers one to five, and assigned each respondent an average
value, including in the sample only respondents who answered at least three of
the five questions. We then computed the median cohort, whose response was
2.67, lying between “agree” and “neither agree nor disagree.” We computed the
mean income of the median cohort, and the mean income of the sample.

In Table 10.3, I report the statistical features of the answers to these questions
that are relevant for us. This time, the mean income of the median cohort
appears to be less than the mean income of the sample; the central-limit-
theorem test says that this order of the two means is correct with probability

Table 10.3 British social attitudes survey, 1993: Authoritarian versus libertarian

preferences
Sample size 2,100
Mean income of sample (1) £15,194
Median view on issue 2.667
Mean income of median cohort (1) £14,691
Size of median cohort (1) 219
S.D. of median cohort’s income (o) 9,777

Pr{m < u} 0.78
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.78—not a very high confidence level. One must note, however, that we do
not have the mean income of the median voter cohort, which may be greater
than mean population income. If, however, we assume that “u — u < 0” is
true, then, from the discussion of section 10.3, the relevant hypothesis is about
the behavior of not the Labour Party but rather the Conservative Party. The
inference is that, with probability .78, inequality C3* holds, and the model,
in that case, implies that a Conservative Party in power would move to the
left in its economic policy as the salience of the authoritarian-libertarian issue
increased.

From these tests the model suggests that, if the salience of the noneconomic
issue of race increases in the United States, Democrats will propose increasingly
conservative tax policies, while we have no reason to believe that Republicans
will propose increasingly liberal tax policies. We have somewhat weaker reason
to believe that, as the salience of the authoritarian-libertarian issue increases
in Britain, the Conservative Party will move to the left in its economic policies.

10.5 Proofs of Theorems

Proof of Proposition 10.1:

Let a™f = inf; a(s) and a**P = sup a(s). Since (z;, zp) is a nontrivial PUNE of
the game G, it follows that (z; + z3)/2 € (a™, a®'P), for otherwise one party
would win with probability one. As well, we know that a; < z; <z, < ay. Now
suppose that z; is less than a™, and suppose that 8 is small. If L deviates
to z; + 44, this costs L’s militants very little in utility, but L now wins with
probability one, because (z; + 46 + z)/2 > a™ 4 28 > g%, (If a(s) is less
than the average of the two policies for all s, then L wins in every state.)
Hence for any € > 0, if (z;, zy) is an €-PUNE, and § is small enough, we must
have z; > a™. An exactly parallel argument shows that z; < a**P. Therefore,
Az < 2§. Consequently, if uncertainty is small enough, we know that Az is as

small as we please. =

Proof of Proposition 10.2:

We first observe that (z;(1), zz(1)) must be a PUNE in G,. Suppose this
were not so. Then one party—say L—could profitably deviate. This means L’s
militants would gain in the deviation. If L’s opportunists also gained in the
deviation, then for « close to one, L’s militants and opportunists would also
strictly gain in a similar deviation from (#;(«), z; («)), which is impossible.
It follows that L’s opportunists do not gain in the postulated deviation in G,
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which means the probability of L victory at (z;(1), zz(1)) is already one, and
stays at one under the deviation. (This remark relies upon understanding the
simple structure of PUNEs in the unidimensional Euclidean game G,.) But this
means that lim,_, 7 (t; (a), z; (@), tg(@), zx(e)) = 1. That is, the probability
of L victory becomes arbitrarily close to one for « close to one in the sequence
of PUNEs under consideration. But it then follows that, for « close enough to
one, a very small deviation by L could render the probability of L victory one,
which means that the PUNE in question is not an €-PUNE. This contradiction
establishes that (z; (1), zz(1)) is a PUNE of G;.

It now follows that (z; (1), zx(1)) is a nontrivial PUNE in §,, for if the
probability of victory for one party were one, then the argument above would
show that for « close to 1, (;(«), z; («)) would not be an e-PUNE in G,,.

Finally, suppose that there was a deviation by party L, say, from (z; (1), zx(1))
at which the probability of L victory became one and L’s militants lost utility
less than €. Then for & close enough to one, a similar deviation would give L an
almost sure victory in G, at a cost of less than € to L’s militants, contradicting
the fact that (¢, (@), z; (@), tg(at), zz(@)) isan e-PUNEin G,. =

We next differentiate (10.6) with respect to the two components of Left’s

policy, which gives
7 4 U=0A 1—a) (w—
o S8 nrE R v — ), w) R
(109) 5, = - T OA (o) ,
' S 8 1 (a, wyda dw
and

= 1—a)A I—a)A -~
o L aerG R o — ) (4 SR ) dw
s o 2+ DA Gy b ()
’ [ o0
w

=—r(a, wyda dw

Proof of Proposition 10.3:

This proposition does not use the fact that the PUNEs in question are €-
PUNE:s.

Suppose there is a sequence of o’s tending to one, with an associated se-
quence of nontrivial PUNEs, in which ¢; (o) > 0. We shall show that, at each
« sufficiently close to one, there is a direction in which Left’s militants and
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opportunists will agree to deviate, which contradicts the assumption that we
are at a PUNE.

To be specific, we shall show the existence, for o near one, of a direction
(—1, §()) such that

(10.10) Vv, - (—1,8()) > 0,
and
(10.11) V5" - (=1, 8(x)) > 0,

which means that both the militants and the opportunists in Left can increase
their utility by moving in the direction (—1, §(«)).

The components of the gradient V; s* = (9s*/9¢;, ds*/dz; ) are given by equa-
tions (10.9ab). Since t; («) > 0, the direction (—1, § («)) is feasible at 7, for any
number § («).

Inequality (10.10) expands to

(I —a)(w, — )
O((ZL(‘X) - a[,) )

(o) <

For the moment, let us choose §(o) = ((1 — a)(w; — )/ (e (z; (o) — a;)).
Substituting this value into the inequality (10.11), using the formulae for the
components of V,s*, and taking the limit of the derived expression as o goes
to one, we may compute that (10.11) holds for « close to one if:

/gs*(mr(z(l),w) Wt — "R e w)rGEQ), wydw > 0.

Az (1) 2(z;(1) —ay)
(10.12)

Recall that 1z denotes the mean income in state s* of the cohort of citizens
with the median religious view. Then we have, by definition:

_ Jwgew)r(a(s"), wydw
He = [g+(W)r(a(s*), w)dw )

Now divide inequality (10.12) by [g.(w)r(z(1), w)dw, which gives us

Jwge(W)r(Z(1), w)dw s (u —wp)Az(1)
[g(w)r(z(1), w)dw 2(z;(1) —ay)
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But if uncertainty is small, then

__ Jwgew)rE1), wydw
e Jg(W)rz(1), wydw

(We are here invoking Proposition 10.2, which tells us that (z; (1), zz(1)) is an
€-PUNE in §,, and so z(1) is close to a(s*).) It therefore follows that (10.12) is
implied by C2*; hence (10.11) is true for this choice of § («).

It follows that if we choose § () = % — y, for y sufficiently small,

then both (10.10) and (10.11) hold, which is the desired contradiction. =

Proof of Theorem 10.1:

Proposition 10.1 has shown that if (z; (1), zz(1)) is an €e-PUNE of G, for all
€ > 0, then Az(1) is very close to zero, and (z; (1) — a;) is bounded away from
zero, since z; (1) is very close to the number v in the interior of the interval
(ap, ag). It follows that the r.h.s. of inequality (10.8) can be made arbitrarily

close to zero. Now C2 implies that (10.8) is true. Now invoke Proposition 10.3.
]

Proof of Theorem 10.2:

Let (zf, z}) be a nontrivial e-PUNE in the game G,. (It is easy to see that, for
small € > 0, these exist.) I shall argue that ((0, z}), (0, z3)) is a PUNE in the
game G, for o close to one. It is immediate that, for « close to one, neither
party wins with probability one at this policy pair, which establishes the claim
of nontriviality. The claim that ((0, z}), (0, z})) isindeed an e-PUNE in G, also
follows from its being an e-PUNE in G;.

Suppose to the contrary, that for a sequence of o’s approaching one, ((0, z{),
(0, z3)) is not a PUNE in G,,. There are two possibilities.

Case (1) There is a subsequence of s such that Left’s militant and oppor-
tunist factions would agree to deviate from (0, z}') in the game G,.

Let, then, (; («), z; («)) be a policy that Left’s militants and opportunists
would agree to deviate to from (0, zJ') and that is a best response by Left to
(0, zg), in the game G,. It follows that z; (o) must be close to zj for o close
to one, or else the probability of Left victory would be zero, contradicting the
supposition that Left’s opportunists agreed to deviate to this point from (0, z;).
It therefore follows, by condition C2, that, for large o:

(zz — zp (@) (1 — wp)
2(ZL(Ol) - aL) )

(10.13) Tty — o >
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But (10.13) plays exactly the role of C2*: we can invoke the argument in the
proof of Proposition 10.3 to conclude that, for large «, t; (¢) = 0, in any Left
best response to (0, z3).

Hence Left agrees to deviate to (0, z; () from (0, z/) when facing (0, zj)
in G,. But, since both tax rates are zero, this means that Left would agree to
deviate from (0, zf) to (0, z; () in the game G, when facing (0, zj)—which is
impossible, since ((0, z;), (0, z3)) is a PUNE in §G,. The contradiction shows
that, for large «, (0, z;) is indeed a best response by Left to (0, z;) in G,.

Case (2) There is a subsequence of a’s such that (0, z3) is not a Right best
response to (0, z;) in G,,.

Let, then, (tz(), zz(cr)) be a Right best response in G, to (0, z;) to which
Right’s militants and opportunists agree to deviate, from (0, z3;). We shall
similarly prove that, for large «, it must be that (o) = 0, and a contradiction
will then follow, just as above. This time, however, we cannot invoke the
argument of Proposition 10.3, for we did not study Right’s strategy in that
proof. We therefore must prove independently that ¢4 () = 0.

We know, by condition C2, that, for large a:

(zp() — z) (e — wp)
Z(ZR(Ol) - aR)

(10.14) Wy — >

b

because if zz (o) — z; did not become small, then Left would eventually win
with probability one, and (t3(), zz(ar)) would not be an attractive deviation
to Right’s opportunists from (0, z) in G,,.

Suppose fz(c) > 0. We shall construct a direction (—1, 8(«)) such that

(10.15a) Vgs™ - (—=1,8(x)) <0
and
(10.15b) Vv, - (—1,6(x)) >0,

where the gradients are evaluated at ((fz(«), zz(a)), (0, z}’)), which means that
Right would agree to deviate in that direction, in G,,.

By differentiating (10.6), we compute that the components of the gradient
Vis* are given by
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J 8 0@+ SZEA v — o), w) S

ds* alAz

Aty D ’

and

b~ seOnrG+ 0w — ) (3 - SR ) d
BZR B D ’

where D is the denominator in equation (10.9a). Using these formulae to
expand (10.15a), and letting o tend to one, we observe that (10.15a) holds
for a close to one iff

20 - @) (1 — )

(10.16) 8(a) < e ,

recalling here that Az = zp(o) — 2}
Let S(a) =21 — a)(u — ) /aAz. Now suppose, contrary to (10.15b),
that
(10.17) Vg - (—1,8(a)) <0.
Expanding (10.17) yields

(zp() — z) (e — wp)
Z(ZR(O‘) - aR)

R — 0 < >
which contradicts (10.14). Hence (10.15b) holds at the above choice for
S (). Consequently, for sufficiently small y, (10.15b) holds for the direction
(=L, 8(@) — ). A

But inequality (10.15a) holds as well for the direction (—1, 6(&) — ), for
any positive y, since (10.16) is true. Hence this case is impossible as well. =

10.6 Concluding Remark

We may finally reflect upon a view, which has often been held in Left circles,
that the Right deliberately “creates” a certain noneconomic issue—or tries
to increase the salience of some such issue for voters—as a means of pulling
working-class voters away from Left parties, thereby driving economic policies



208 10 | Why the Poor Do Not Expropriate the Rich

to the right. In this view, the Right party pretends to care about, say, the “reli-
gious” issue, while in fact being interested only in lowering tax rates (or rolling
back nationalization and so on). Right may implement this masquerade by at-
tracting political candidates who do, indeed, feel strongly on the “religious”
issue.

Our analysis certainly indicates that this can be a strategy to achieve more
conservative economic policy. Of course, Left can play the same game, and
attempt to increase the salience of an issue for which C3 holds, thus forcing
Right to move to the left on economic policy. Our analysis, then, suggests
a new way to read the history of the emergence of noneconomic issues in
electoral politics. Have Left and Right parties “chosen” which noneconomic
issues to emphasize (that s, increase the salience of ) with an eye toward pushing
electoral equilibrium on the economic dimension in a desired direction?

Whatever the verdict on that historical issue, our analysis suggests that
emerging new dimensions of citizen concern, which are addressed in com-
petitive, party politics, can change the positions of parties on classical issues in
surprising ways.
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Distributive Class Politics and the Political
Geography of Interwar Europe

11.1 Introduction

Since European socialist parties decided to participate in elections, around the
turn of the twentieth century, many scholars have viewed European politics
as the expression of the “democratic class struggle.” That phrase was appar-
ently first used in the title of a book by Dewey Anderson and Percy Davidson
(1943), Ballots and the Democratic Class Struggle, with reference to the Amer-
ican experience, and the idea continues to resonate. Seymour Martin Lipset’s
(1959) classic Political Man is organized around the theme, with a chapter en-
titled “Elections: The Expression of Democratic Class Struggle,” and the title
of Adam Przeworski and John Sprague’s (1986) Paper Stones is a phrase that
early German socialists used to describe ballots: like real stones, casting them
against the bourgeoisie could topple them from power.! The class analysis of
elections is the hallmark of almost countless other studies: the best include
Tingsten (1941), Abraham (1981), and Hamilton (1982).

These studies are written in the main by historians and political scientists; as
is to be expected, the latter tend to abstract, somewhat more than the former,
from thick historical particularity in favor of general explanation. Among
the best of these is Gregory Luebbert’s (1991) Liberalism, Fascism, or Social
Democracy: Social Classes and the Political Origins of Regimes in Interwar Europe,
in which the author attempts to explain what determined the choice of regime
in countries in interwar Europe. Luebbert proposes that liberals failed to win,
in this period, because they were not willing to use state power to intervene
against what citizenries saw as the heartless effects of the unrestricted market,

1. Other indicative titles are Walter Korpi, The Democratic Class Struggle (1983), and Paul
Nieuwbeerta, The Democratic Class Struggle in Twenty Countries (1995).

209
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while both the socialists and the fascists were willing to do so. What, then,
determined social democratic victories in some states and fascist victories in
others? Luebbert proposes that the decisive factor was the status of class struggle
in the countryside.

Luebbert says that the electorate was composed of four numerically sig-
nificant classes: the urban working class, the urban middle class, the rural
peasantry (family farmers who own land), and the rural proletariat (landless
laborers). The classes of large capitalists and large landowners may, of course,
have been important in their influence on parties,” but they were trivial as far as
direct voting was concerned. The key to electoral victory, Luebbert claims, was
the formation of an electoral alliance between the landed peasantry and one
of the urban classes. If class struggle in the countryside was quiescent, then,
he says, the social democrats were able to appeal to the landed peasantry and
to construct an alliance between them and the urban workers, usually suffi-
cient for electoral victory over the Right. In the cases where rural class struggle
was active, however, the socialists always took the side of the rural proletariat,
alienating the landed peasantry (their employers), thus leaving the latter class
open to appeals from the fascists, who were then able to construct an alliance
between them and the urban middle class. The three countries in which this
second scenario transpired (says Luebbert) were Germany, Italy, and Spain.

It is worth reproducing Luebbert ’s prose on this point, as it is central to the
present study.

As we see, however, their [the German Social Democrats’] inability to make
an effective alliance with the countryside had much more to do with their
involvement in agrarian class conflict than it did with the burdens of member-
ship in the initial Weimar coalition per se. The polarization of peasant-worker
relations that ensued militated against an alliance that would have embraced
measures to address the peasants’ grievances as producers. (Luebbert 1991,
285)

When socialist parties did succeed in making regime-stabilizing coalitions with
the peasantry, it was not because they had a superior grasp of the strategic
requirements of the moment, but because they did not attempt to organize
the rural proletariat. (287)

2. As Abraham (1981) strongly argues.
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Hence, the Spanish Socialists’ campaign for land reform in the south of Spain
antagonized peasants even in the north. (286)

Socialists succeeded in making a coalition with family peasants wherever the
agrarian proletariat had been mobilized by others before socialists had an
opportunity to do so. (288)

It was this entanglement [in rural class conflict] rather than conflicts between
urban consumers and rural producers that distinguished socialist movements
in Germany, Italy, and Spain from socialist movements in Norway, Sweden,
Denmark, and Czechoslovakia. (300)

Whatever the quibbles about precisely who voted for the Nazis in Germany, it
is clear that the social core of that support came from the urban middle classes
and the Protestant peasantry of the west. (301)

Given the impuissance of liberal movements . . . the precondition of fascism
was a working-class movement engaged in a defense of the rural proletariat.
The coalitions of urban and rural middle classes that took shape in Spain, Italy,
and Germany were premised on a common ambition to extirpate the socialist
working-class menace. (303)

My aim in this chapter is to construct a model of party competition which
can test Luebbert’s theory. The model will consist of two parties, to be thought
of as Socialists and Fascists, or Left and Right, each of which proposes a policy
to voters. A policy will be a distribution of the national income among the
four classes named above. If national income is fixed, as I shall assume, then
the policy space is three-dimensional, since there are four classes. Giving each
party the freedom to choose any income distribution (among the four classes)
models the idea that both Left and Right parties were willing to intervene
in the market: while the allocations of income that the market can deliver
arguably constitute a small subset of the relevant three-dimensional simplex,
these parties, according to Luebbert, did not restrict themselves to that subset.
I will examine equilibria of the model under two conditions: first, that class
conflict between the two rural classes is quiescent—has been resolved—and
second, thatit has not been resolved. The hypothesisI test is that the probability
of a Left victory is greater in the first case than in the second case.
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We shall use the concept of PUNE to model political competition between the
Left and the Right. In the first part of the chapter, we assume that there are only
two parties. Later we shall introduce a third party—the Communists—as well.

11.2 The Luebbert Model

According to Luebbert, interwar European politics were class politics: each
party appealed to distinct classes by proposing policies which possessed clear
consequences for the class distribution of income. Whether the Left or the
Right won was, he wrote, critically determined by whether class struggle in
the countryside was settled or contested.

11.2.1 THE FOUR-CLASS MODEL

The four relevant classes are the workers (W), the middle class (M), the landed
peasantry (L), and the agricultural proletariat (A) or landless laborers. I shall
telescope political behavior by assuming that each party proposes a division of
national income among the four classes, that is, a vector (w, m, £, a), where
ow + um + M + aa = 1, all components of which are non-negative, and
(w, 1, A, @), are the population proportions of the four classes. w is the income
a worker will receive at this policy, and so on. The three-dimensional policy
simplex is denoted by S;.

This formulation of the policy space is, clearly, a vast simplification. In point
of fact, parties proposed complex policies—involving nationalization, taxa-
tion, tariff policy, and land reform, to name several. I am assuming that voters
interpret each policy as implying some distribution of income, (w, m, £, a).
That process of interpretation is here eclipsed. Furthermore, I am assuming
that national income is fixed, and does not respond to different policies, and
that no other constraints (except being in S;) limit policies.

There are two parties, here called Left (L) and Right (R). The Left party “rep-
resents” primarily the workers, and secondarily the agricultural proletariat; the
Right “represents” mainly the middle class and secondarily the landed peas-
antry. The (von Neumann—Morgenstern) utility functions of the parties are
given by

(11.1a) vy (w,m, {,a) =Logw + B; Loga
(11.1b)  vp(w, m, £, a) =Log m + By Log £

where 8, and Sy are in the interval [0, 1].
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We assume that each party consists of opportunist, militant, and reformist
factions, as usual. Since we may dispense with the reformist factions, we may
view v; and vy as representing the ordinal preferences on S; of the two militant
factions. Thus equations (11.1) say that the militant faction in each party has
Cobb-Douglas preferences over the distribution of income within a pair of
classes—the Left’s militants caring about the two propertyless classes, and the
Right’s caring about the two propertied classes.

We employ, in this application, the finite-type model of probability (see
section 2.4). The function = is defined on S5 x S;. Denote a policy proposed
by Left as L = (w, m, £, a) and by the Rightas R = (w/, m', £, a).

Let f(x) = (1 —x)/(1 + x). Define

winme(l () on(1 ()
(31 (0) e+ 3)

€, and €, are i.i.d. random variables, uniformly distributed on [0, 1]. I shall
assume that ¢ (L, R) is the fraction of the population who vote for L against
R, which depends upon the realization of €, and €,. To recall, note that if
L =R, then ¢ = % If w > w/, then more than one-half the worker vote for
L, but there is a random element in exactly what fraction vote for L. The term

(11.2)

f (W' /w) will be close to one if w is much bigger than w’, and close to —1 if w' is
much bigger than w. The random element can be interpreted in various ways:
perhaps there is some indeterminacy in how the workers will vote because they
care about issues other than economic ones, such as religion; perhaps there
is indeterminacy because different voters transform (or interpret) the actual
policies into income distributions in different ways.

Similarly, the other terms in the expression (11.2) express the fractions
of the other three classes that vote for Left. Ideally, one would include four
random variables in this expression, one for each class; I have settled for
two, because having two already generates a sufficiently complex probability
function.

It follows from (11.2) that the probability that L defeats R is

(11.3)  m(L,R) =Prob[¢(L,R) > 1].
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Letting a, = f (W'/w)w + f (m'/m)u, and

azzf(%/>k+f<%/)oz,

we must compute

(11.4)  m(L,R) =Prob[a,e, + a,¢, > 0].

There are six cases.>

Case (1) a, > 0,a, <0, —a,/a, < 1. Here we have

—a,€
n:Prob|:61> 22].

a
Clearly,

11
=/f de,de,.
0

A
a1

Integrating (draw a picture of the unit square—see Figure 2.1), we have

T=1 —|— —
26!1
In like manner, we can compute the probability of Left victory in the other
five cases.

Case (2) a, >0,a, <0, —a,/a, > 1. Here,

G

" 24,
Case (3) a, <0,a,>0,—a,/a, <1.Here,

la
r=—22
2a4

3. The model of probability used here corresponds to one illustrated by Figure 2.1. Had I used
instead the model associated with Figure 2.2, there would be only one formula for the function
w—much simpler. Unfortunately, I had not thought of the second approach when the research
for this chapter was carried out.



11.2 | The Luebbert Model 215

Case (4) a, <0,a,>0,—a,/a, > 1. Here,

!
T=1+—.
2a,

Finally, we have obviously:

Case (5) a;>0,a,>0=>m=1.
Case (6) a; <0,a,<0=>m =0.

Thus we have defined the function 7.

We now have all the information needed to define PUNE.

We next characterize the local conditions for a pair of policies’ constitut-
ing a PUNE. Define g(w, m, £, a) = 1 — (ow + um + AL 4+ aa). The “budget
constraint” for each party is

gL)=0, gR) =0.

Define the gradients

dmr om Odm oOm
VL7T = PRV
ow om d€ Oda

omr Odm dm om
ijT: N 0 A A A~
ow' om’ 9¢ dd’

1
Yy, = (—, 0,0, ﬁ)
w a

1
Vg = (O, —, &, O) .
m £

Our conditions for a PUNE , via Farkas’ lemma, are
(11.5a) —=Vg(L) =x, Vv (L) +y; V7 (L, R),
(11.5b)  —Vg(R) = xzVvp(R) — y; V7 (L, R),
(11.5¢) g(L)=0, and g(R)=0.

These equations would suffice to characterize (global) PUNE if the function
7 were quasi-concave—but, in fact, it is not. We shall be content with locating
local PUNEs.
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Equations (11.5 a—c) constitute ten equations in twelve unknowns (w, m, £, a,
w,m', ', a', x;, ¥, Xz, i) Thus they possess either no solution satisfying the
non-negativity conditions or a continuum of such solutions.

11.2.2 THE MODEL WHEN AGRICULTURAL CLASS STRUGGLE IS RESOLVED
We must now model the idea that in some countries, class struggle between
the landed peasantry and the agricultural worker was not an issue. To do this
simply, I propose to say that, when class struggle in the countryside is resolved,
a division of the agricultural product had been agreed upon; specifically, there
exists a number y > 0 such that all policies are constrained by

(11.6) L =vya.

(One can interpret /(1 + y) and 1/(1 + y) as the shares of the agricultural
product going to landlord and tenant, respectively.) Thus each party proposes
a policy subject to two constraints: the “budget” constraint (11.5¢) and (11.6).
We may reformulate this by saying that each party proposes a policy (w, m, £)
subject to

(11.7) ww—l—um—l—()d—g)Z:l,
14

leaving a, the agricultural workers’ share, implicit. Thus policies are drawn for
the simplex S, defined by (11.7).

Assumption (11.6) is equivalent to saying that each party will propose how
much to give the rural sector, but it will leave the division of rural income to
already existing contracts between family farmers and landless laborers.

The Right’s utility function is defined on S, as

Vg(w, m, £) = Log m + By Log ¢,

as in (11.1b). The utility of Left on S, is, according to (11.la), Log w +
B; Log £/v: but these preferences can be equally well represented by

v (w, m, £) = Log w + B, Log ¢,

because y is a constant.
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By consulting (11.2), and using the constraint (11.6), we observe that the
fraction of voters who vote Left is

; v oL (Y <l+i (E/))
o(w, m, &, w', i, )_w<2+2 (w>)+” > 2
a3+ (7)):
+(*+o E+z 7))

hence the probability of victory is given by
7 (w, m, &, w', m', £') = Prob[¢ > %].

The formulae defining 7 are hence given by the six cases discussed earlier,
where now we define a, as previously, but newly define

v
az == ()\ + Ol)f <Z) .

Now define the budget equation as

g(Wam;€)=1—(ww+um+(k+g)g).
14

Then a pair of policies L = (w, m, £) and R = (w/, m/, £') constitute a (local)
interior PUNE iff there exist positive numbers x;, y;, X, ¥ such that

(11.8a) —Vg(IL) =x, V¥, (L) +y,V,7 (L, R)
(11.8b)  —VgZ(R) = xzViR(R) + yx Vet (L, R)
(11.8¢) g() =0,

and

(11.8d) g(R) =0.
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This is a system of eight equations in ten unknowns; either there is no solu-
tion satisfying the non-negativity conditions, or there is a continuum of such
solutions.

I call this model the three-class model.

11.3 Testing Luebbert’s Theory

My method for testing Luebbert’s theory is simple. I first describe the skeleton
of the method, and then fill in the flesh. We study two countries, Germany
and Sweden. In Germany, class struggle in the countryside was unresolved.
Therefore we model Germany with the four-class model. We compute the
(average) probability of Left victory in PUNEs of this model. Then we compute,
counterfactually, the average probability of Left victory, had the three-class
model described Germany. If the three-class-model probability of Left victory
is greater than the four-class-model probability, Luebbert’s theory is supported.

Sweden was a country in which, according to Luebbert, class struggle in
the countryside was resolved. We compute the average probability of Left
victory in PUNEs of the three-class model. Counterfactually, we also compute
the average probability of victory in PUNEs of the four-class model, with
Swedish parameters. Again, Luebbert predicts the first number is greater than
the second. Now for some details.

11.3.1 paTA

The data of the models are the sets {, i, A, &, B, B, ¥}. The vectors (w, i,
A, ) are computed from Przeworski, Underhill, and Wallerstein (1978), who
assembled them from census data.* They are

For Germany in 1933: {w, u, A, o, } = (14242, .3501, .1584, .0673),
For Sweden in 1930: {w, i, A, «, } = (4225, .2385, .2149, .1244).

Thus the propertied classes constitute 51% of the adult population in Ger-
many and 45% in Sweden. Germany is more urbanized than Sweden: 77% of
the population live in cities, versus 66% in Sweden. In sum, Sweden is less
urbanized but more proletarianized than Germany.

4. Przeworski, Underhill, and Wallerstein (1978) report the detailed occupational distribution
of the population of various European countries for various years. We partitioned the occupations
into our four classes.
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We chose various values for the remaining data (8;, B, ) in our calcula-
tions.

11.3.2 THE CALCULATIONS OF PUNE

First, I describe the four-class model. Our problem is to find non-negative solu-
tions of equations (11.5 a—c) in the twelve unknowns. These equations cannot
be solved analytically. We first reduce the ten equations in twelve unknowns
to four equations in six unknowns, as follows. Solve the first two equations of
(11.5a) for (x;, y;)—this is easy, as the equations are linear in (x;, y;). Like-
wise, solve the first two equations of (11.5b) for (xg, y5). Solve the two budget
equations for one Left policy variable and for one Right policy variable. This
leaves four equations in six unknowns.

We now generate values for two of these six unknowns randomly, and
solve the four-equation system in the remaining four unknowns, via New-
ton’s method (we used Mathematica). We then check the values of all twelve
variables: if they are non-negative, we have found a local PUNE. This and the
previous paragraph describe one iteration.

Because we have two free variables to choose, we have a 2-manifold of
solutions, and it will generically be the case that (if solutions exist) they will
project onto a set of positive measure in the coordinate plane associated with
two of the policy components.

A slight complication is introduced because there are six possible formulae
for the function , and hence for the gradients V,w and Vyzm. We therefore
in fact investigated four cases, corresponding to the four cases listed above in
which 0 < 7 < 1. For instance, we carried out the above procedure letting 7 be

defined by Case 1 (71 L,R)=1+ %). Consequently, when we generated
a solution to the equations, we had to check whether, in fact, the solution is in
the region of the simplex S, where the “Case 1” definition of 7 applies.

Our procedure was to compute 500 iterations for each case: thus 2,000 iter-
ations for each experiment.

The method for solving the three-class model is analogous. First, solve two
equations of the system (11.8a) for (x;, y;), then solve two equations of (11.8b)
for (xg, yg), then solve (11.8¢c) for one Left policy variable and (11.8d) for a
Right policy variable. This leaves two equations in four unknowns. We gen-
erate two of these unknowns randomly, and solve for the remaining two. We
check the “case” constraint on 7, and the non-negativity of the solution. We
performed 2,000 iterations for each experiment.
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Tables 11.1 and 11.2 (Tables 11.3 and 11.4) report the average probability
of Left victory (;r) in the PUNEs we found for Sweden (Germany), and the
standard deviation of these probabilities (o). They also report the average
expected vote for Left, which is defined as

v =E(@$(,R)) = % +i <wf (%) + uf <%) +Af (%) +af <QZ/>) :

We report as well the standard derivation of v for the PUNEs found (o,).

Table 11.1 Sweden, 1930

No. of No. of PUNEs

Run B, Br y classes b4 o, v o) /2000

1 0.5 0.5 1.5 3 638 .096  .5008 .0012 120

2 0.5 0.5 1.3 3 .644 136 — — 128

3 05 05 NA* 4 435 071 5006 1.9 x 107° 9

4 0.5 0.5 N.A. 4 452 .059  .5004 1076 9

5 05 1 1.5 3 .624 150  .5042 .0036 51

6 05 1 N.A. 4 318 .009 498 3% 107° 20

7 05 1 N.A. 4 337 .022 499 8 x 107° 36

8 0.1 0.5 1.5 3 597 185 5044 .0061 281/4000

9 0.1 0.5 1.3 3 589 186  .5099 4.6 x 1078 152
10 0.1 0.5 1.5 3 594 184 5042 .006 146
11 0.1 05 NA 4 .667  .023 506 3x 107 58

12 0.1 05 NA 4 .634  .034 .5053 4x107* 111
13 0.5 0.1 1.5 3 475 170  .500 .0017 103
14 05 01 NA 4 394 — .500 — 1

15 1 1 1.5 3 .800  .064  .5004 .002 19

16 1 1 N.A. 4 387 .023 4998 1.3 x 107° 85

Note: N.A. indicates not applicable; a dash indicates not computed.
* There is no parameter y in the four-class model.
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Figures 11.1a, 11.1b, and 11.1c graph the set of PUNEs found, for run 8,
Sweden, the data being {country, year, B, , By, ¥}={Sweden, 1930, 0.5, 0.5,
1.5}. Figure 11.1a graphs the projection of the simplex S, onto the (w, £) plane

of Left policies, and Figure 11.1b shows the projection of S, onto the (7, £)

plane of Right policies. Figure 11.1c displays the PUNEs on S,. When each

PUNE, consisting of two policies, is color coded, as on the back cover of this
book, the Left and Right policies of a PUNE appear in the same shade. Then the
PUNE:s appear to be symmetrical around a line in S,, so that the Left and Right

policies are approximately equidistant from that line, although the distance
changes with the PUNE.

No. of No. of PUNEs
Run B, Br y classes b4 o, v 0y /2000
1 0.5 0.5 2 3 727 175 501 .00097 35
2 0.5 0.5 1.5 3 739 .165 501 6x 107* 25
3 0.5 0.5 N.A. 4 408 .055 .500 3.6 x 107° 29
4 05 05 NA. 4 344 026 499 10-° 17
5 0.5 1 1.5 3 222 182 497 .0022 30
6 0.5 1 N.A. 4 412 .096 .503 7 x 107 21
7 0.1 0.5 1.5 3 717 175 .509 .0073 62
8 0.1 0.5 1.5 3 712 .208 .510 .0079 56
9 0.1 0.5 N.A. 4 445 116 .504 7 %x 1073 26
10 0.1 0.5 N.A. 4 424 111 .503 7 x 107 30
11 0.5 0.1 1.5 3 418 .190 498 .004 29
12 0.5 0.1 N.A. 4 .105 — 490 — 1
13 1 1 1.5 3 767 071 .500 8 x 1072 11
14 1 1 N.A. 4 .344 .026 499 107° 17

Note: N.A. indicates not applicable; a dash indicates not computed.

* There is no parameter y in the four-class model.
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Figure 11.1a Projections of 281 PUNEs, Left policies, for Sweden onto the (w, £) plane
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Figure 11.1b Projections of 281 PUNEs, Right policies, for Sweden onto the (17, £') plane
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Figure 11.1c Swedish PUNEs of Figures 11.1a and b, shown on the budget simplex

11.3.3 OBSERVATIONS

(1) From Figures 11.1a and 11.1b, we see that, although we are dealing with
a continuum of equilibria, they appear to be quite localized in the domain
simplices. So the average values of the policies given in Tables 11.2 and 11.4 are
quite indicative of what the typical equilibrium looks like.

(2) In all PUNEs, the expected vote (v) is very close to 0.5; note how small the
standard deviations (o,) are. In fact, in all PUNEs we found, 0.48 < v < 0.52.
Contrast this with the probability of Left victory, which varies a great deal across
experiments. As we have pointed out in Chapter 2, it is not inconsistent to say
that Left has a high probability of victory and that we expect approximately
one-half the population to vote for Left. The expectation that the vote will be
close is different from the expectation that each party has an even chance of
winning.
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(3) To test Luebbert, we compare the average probability of Left victory in the
three-class and four-class models. For Sweden (see Table 11.1), all experiments
are consistent with Luebbert’s theory except for the case (8;, Bz) = (0.1, 0.5)
[see runs 8—12]. In that exceptional case, the Left has a higher probability of
victory if there is class struggle in the countryside. I suggest that the explanation
can be gleaned from looking at Table 11.2. Note that, unlike the other cases,
the Left offers the landed peasantry more than one unit of per capita national
income when class struggle is active in the countryside. This is because the
Left essentially does not care about the rural proletariat in this case (8; = 0.1),
and so the Left militants allow the opportunists to determine the allocation of
income in the rural sector. Hence Luebbert’s explanation of Left defeat does
not apply.

Turning to Germany (see Table 11.3), we see that all experiments are con-
sistent with Luebbert’s theory, except (B;, Bg) = (0.5, 1) [see runs 5 and 6],
although the case (8;, Bz) = (0.5, 0.1) [see runs 11 and 12] is inconclusive as
we found only one local PUNE in the four-class model for that parameter vec-
tor.

(4) When B, = By, we should expect 7 > % in the three-class model (see runs
1, 2, and 15 of Table 11.1 and 1, 2, and 13 of Table 11.3). This is because the
utility functions of the two militant factions are in this case the same, except that
the Left cares about workers primarily, and the Right cares about the middle
class primarily, and @ > p. This expectation is borne out in the observations.

(5) When there is class struggle in the countryside (four-class model, Swe-
den and Germany, in the cases (8, 8z) = (0.5, 0.5) [see runs 3 and 4 of Tables
11.2 and 11.4] and (B;, Bz) = (0.5, 1) [ see runs 6 and 7 of Table 11.2 and run
6 of Table 11.4 ]), the two parties polarize in opposite ways vis-a-vis the rural
population: the Left dramatically favors the agricultural workers over the small
farmers, and the Right dramatically favors the landed peasantry over the agri-
cultural workers. In these two cases, 7 < % These are the clearest illustrations
of Luebbert’s mechanism. The Left champions the cause of the agricultural pro-
letariat, while the Right favors the small farmers, which increases the Right’s
probability of victory, because A > «, over what it would be in the three-class
model.

(6) The case (B;, Bg) = (0.1, 0.5) is ambiguous. For Germany (see runs 9 and
10 of Table 11.4), the same intuition holds as in observation (5): in the four-
class model the Left and Right polarize in opposite ways vis-a-vis the rural
classes, and the probability of Left victory falls, in comparison with the three-
class model. But in Sweden (see runs 11 and 12 of Table 11.2), although there is
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some polarization in what the parties offer the rural classes, the probability of
Left victory remains high—in fact, higher than in the three-class model. This
is inconsistent with Luebbert’s theory.

(7) With the exception of the case (8;, Bz) = (1, 1) in both Sweden and
Germany, both parties offer the small farmers income greater than their per
capita share (one) in the three-class model. The irony is that, in the one case
where parties do count the welfare of the peasantry as heavily as the welfare of
their primary class (8 = 1), the peasantry get less. I have no intuition for this.

(8) The middle class is 50% larger in Germany than in Sweden. One might
expect that this would cause the Left to offer them more in Germany than in
Sweden: there is, however, no such pattern observed. The agricultural prole-
tariat is twice as large in Sweden as in Germany. One might expect that, in the
four-class model, this would cause the Right to offer them more in Sweden
than in Germany, an expectation that is borne out by our observations.

(9) I next summarize the observations in a different way. Define

ow + um oW + um’
a = — a = —-——
LU > RU
o+ @ o+
ww + aa ow' + ad
a = a = —
w ota RW oto

for two policies (w, m, £, a) and (W', m’, €', a’). ay; is the fraction of per capita
national income that Left proposes to give to the urban classes, a;, is the
fraction of per capita national income that Left proposes to give to the working
classes, and so on. Table 11.5 presents mini-tables of the form

Urban Workers

Left aru arw
nght aru arw

for every run reported in Table 11.2 (Sweden), and Table 11.6 presents the
mini-tables for every run in Table 11.4 (Germany).

The second columns of all the mini-tables in Tables 11.5 and 11.6 offer no sur-
prises: the Left (Right) always proposes to give the working (propertied) classes
more than their share of national income. But the first columns of the mini-
tables are not so intuitive. After all, both parties in all cases (at least weakly)
favor “their” urban class over “their” rural class, and so one might conjecture
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that all the column-one entries in the mini-tables would be greater than one:
but this is not the case. The main reason seems to be that, when class strug-
gle has been resolved in the countryside, the parties are effectively competing
directly for the votes of landed peasantry—see their utility functions—which
raises what they offer the landed peasantry. Consider runs 1-4 for Sweden, in
which (8;, Br) = (0.5, 0.5). In runs 1 and 2, corresponding to the three-class
model, the rural sector receives more than its share of national income, but

Table 11.5 Sweden, 1930

Urban Workers Urban Workers

Run 1 Run 9

Left 0.965263 1.08039 Left 1.00723 1.13129

Right 0.954737 0.775922 Right 0.920799 0.75369
Run 2 Run 10

Left 0.996082 1.10494 Left 0.992807 1.11764

Right 0.973918 0.810472 Right 0.899649 0.701415
Run 3 Run 11

Left 1.05329 1.25047 Left 0.944776 1.20365

Right 1.05359 0.782233 Right 0.83768 0.669183
Run 4 Run 12

Left 1.05133 1.23047 Left 0.965595 1.20227

Right 1.04556 0.801331 Right 0.863255 0.69326
Run 5 Run 13

Left 0.900683 1.13404 Left 0.976082 1.07811

Right 0.781286 0.634204 Right 1.01031 0.809528
Run 6 Run 14

Left 1.13657 1.23133 Left 0.926238 1.01545

Right 1.09425 0.849916 Right 0.956218 0.89369
Run 7 Run 15

Left 1.13133 1.2627 Left 1.1923 1.07485

Right 1.0731 0.80674 Right 1.19131 0.979874
Run 8 Run 16

Left 0.99002 1.11219 Left 1.04739 1.03125

Right 0.892436 0.70369 Right 1.04392 0.930514
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in runs 3 and 4, the four-class model, they receive less—as it “should be.” The
same pattern holds in runs 5-7. However, the pattern breaks down in runs 8—
12—here, the rural sector does not receive more in the three class model than
in the four-class model, although it does receive more than its share of na-
tional income in all five runs (except for the marginal run 9, Left). In runs 15
and 16, where each party weights the welfare of “its” urban and rural classes
equally, the urbanites receive more than their share of national income. Here,
the aforementioned pattern reverses: in run 16 (four-class model), the rural
sector receives a larger share of national income than in run 15 (three-class
model).

Table11.6 Germany, 1933

Urban Workers Urban Workers

Run 1 Run 8

Left 0.76828 1.12042 Left 0.892108 1.25166

Right 0.76172 0.491742 Right 0.775021 0.48282
Run 2 Run 9

Left 0.756366 1.1356 Left 1.01558 1.20042

Right 0.749113 0.54282 Right 0.964425 0.775477
Run 3 Run 10

Left 1.0201 1.27846 Left 1.0227 1.17905

Right 1.01416 0.716598 Right 0.977296 0.811369
Run 4 Run 11

Left 1.04861 1.18066 Left 0.896532 1.08631

Right 1.03208 0.83332 Right 0.953468 0.765062
Run 5 Run 12

Left 0.992801 1.31166 Left 0.604979 1.12311

Right 0.933204 0.711493 Right 0.716672 0.518793
Run 6 Run 13

Left 1.01175 1.23983 Left 1.03696 1.08154

Right 0.962774 0.758922 Right 1.0366 0.87303
Run 7 Run 14

Left 0.897586 1.25892 Left 1.04861 1.18066

Right 0.775021 0.481451 Right 1.03208 0.83332
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Next consider the German story (Table 11.6). How well does the conjecture,
that the rural sector does better when class struggle is resolved than when it
isn’t, hold? It holds in runs 1-4, and in runs 7-10. In runs 5-6 it also holds,
but perhaps not with statistical significance; runs 13 and 14 appear to show no
significant difference in what the peasants are offered, and the small sample of
run 12 eliminates runs 11-12 from consideration.’

The lesson we might cautiously draw from Tables 11.5 and 11.6 is that the
rural population should receive, from both parties, a larger share of the national
income when the class struggle among them is resolved. The political logic here
seems clear. I do not know whether the conjecture is borne out historically.

11.4 Introducing the Communists: A Three-Party Model ¢

We now assume there are three parties, the Communists (C), the Socialists (L),
and the Right (R). The utility functions of the militants in the three parties, on
the domain S;, are v, v}, and vg, where

ve(w, m, £, a) = Log w.

Thus the Communists care only about the urban working class—this is a
reasonable representation of the historical reality.

We now face a decision concerning how to model opportunists. We shall
represent the opportunists in Left and Right as wanting to win the plurality of
votes, but the opportunists in the Communist Party as wanting to defeat the
Socialists. I propose that this is a reasonable representation of historical reality,
for during the period 1926-1934, the Communists argued that Socialist parties
were “social fascists,” representing the bourgeoisie in hidden garb (see Claudin
1975). It therefore seems reasonable that an opportunist in the Communist
Party would further his career by working to defeat the Social Democrats. In-
deed, some historical commentators (cf. Claudin) argue that, had Communists
not viewed the Social Democrats as their enemy, the cooperating left parties
could have defeated fascism.

5. Recall that our runs are sampling from the full set of PUNEs, so statistical analysis is, in
principle, possible.

6. This section is not for the computationally faint-hearted. There is, I believe, a value in
showing that sometimes one must plunge one’s hands in the mud.
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Letting C, L, and R represent policies proposed by the three parties, define
7. (C, L, R) as the probability that C defeats L, ; (C, L, R) as the probability
that L defeats both C and R, and 7x(C, L, R) as the probability that R defeats
C and L. I propose that the opportunists in these three parties have the utility
functions 7, 7}, and 7y, respectively.

The most precise analysis of the competition between Socialists and Com-
munists in this period is that of Przeworski and Sprague (1986), who compute
statistically the vote trade-off that Socialist parties, in the various European
countries, faced, defined as the number of working-class votes a Socialist party
would lose for each middle-class vote it gained as it altered its policy to the
right. In these authors’ conception, Socialist Party leaders were concerned not
just to increase their total vote, but to preserve their working-class vote. Thus
even a positive vote trade-off (more middle-class votes gained than working-
class votes lost) would not be sufficient to guarantee the mooted policy move. In
our model, these concerns are embodied not in a unified party leadership but in
different factions: the Socialist militants want to hew closely to a working-class
line, while opportunists pursue (middle-class and peasant) votes.

11.4.1 FORMULATION OF THE STOCHASTIC ELEMENT IN VOTING

We shall assume that all voters are sincere, although this is not a good assump-
tion when more than two parties compete if a coalition government is a possible
outcome of the election. We consider coalition government in Chapter 14 be-
low.

It is possible to generalize the stochastic voting formulation of equation
(11.2) to the three-party model, but it turns out that the associated formulae
for m¢y, m;, and my are complex: the simplex S, (for I shall model the three-
class case) is partitioned into approximately sixteen elements, with different
(differentiable) expressions for the probability functions on each element. This
renders computation of equilibria virtually impossible.

I'therefore adopted the following, simpler formulation. Denote C = (w, 1,
Lesac), L= (wp,my, £, a;),and R = (wy, my, £y, ap) as three policy proposals.
Define
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fori = C, L, and R. I propose to assume that the fractions of workers who vote
for C, L, and R are, respectively,

We + x, W, —x, and Wgs

where x is a random variable with zero mean, governed by a probability mea-
sure F. I propose that the fractions of the middle class that vote for C, L, and
R, are, respectively,

M, M; +y, and My —v,

where y is a random variable with zero mean, governed by a probability mea-
sure F,. The random variables x and y are independent. Finally, I propose that
the landed peasantry vote (with no stochastic element) for the three policies
in proportions L., L;, and Ly, and that the agricultural workers also vote non-
stochastically for the three policies in proportions A, A;, and A.”

I shall assume the case of the three-class model—that is, class struggle in the
countryside is quiescent—because I am principally interested in whether the
high probability of Left victory in the three-class model falls when Communists
participate actively in elections.

We can now formulate the three probability functions. The event that C
defeats L (that is, C receives more votes than L receives) is the event

o(We+x) + uMg 4+ (A + @)L > o (W, —x) + u(M; + y)
(11.9) .
+A+a)l;

(To see this, recall that L, = y A, for i = C, L, and R.) Define

with Ap;, Apes Ape> and so on, defined in like manner. Then (11.9) can be
rewritten

2wx  Agp
(11.10)  y < — 4+ —= = N,(x).
I M

7. Why not insert more random perturbations in these vote fractions? For simplicity’s sake.
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It follows that
00 Na(x)
(11.11) 7y = / / dFy(y)de(x).
-0 —OQ

(Note, of course, that m;’s dependence on the three policies is captured in
Ac)

In like manner, the event that L wins is the union of the two events “L defeats
C defeats R” and “L defeats R defeats C.” Each of these events can be expressed
as an inequality analogous to (11.10). After simplifying, we may express

D oo oo 00
(11.12) JTL:/ / dFy(y)de(x)—l-/ / dFy(y)de(x),
—00 Ay(x) D Na(x)
where
Apc — Ay App
D= R A - — R4
30 20 =t

In like manner, the event “R wins” is the union of the two events “R defeats L
defeats C” and “R defeats C defeats L”; the probability of this event is

D Axx) 00 A1(x)
(11.13) 7rR=/ / dF},(y)de(x)—i-/ / dF,(y)dF, (x),
—00 —00 D —o

where A, (x) = —wx/u + Apc/p.8

Note that, because of the stochastic formulation of voting I have assumed, we
can express the three functions -, 777, and 7 as functions solely of the vectors
(We, mes, £0), (Wp, my, £;), and (wy, 1y, £3)—that is, we can define them on
the domain S, x S, x S,. (This is because the fractions a;/(a- + a; + ay) are
identical to the fractions ¢;/(£- + €; + £3).) Thus under the supposition that
class struggle in the countryside is resolved, we can use the utility functions v,
;, and ¥y, defined on the domain S, and the probability functions 7, 7},
and 7Ty, defined on the domain S, x S, x S,.

8. See the appendix to this chapter for the derivation of formulae (11.12) and (11.13).
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11.4.2 EQUILIBRIUM

In this three-party model it is no longer true that the reformists are gratuitous
in the mathematical characterization of PUNE. Nevertheless, to simplify our
analysis, we shall continue to suppose that the militants and opportunists are
the only active factions. (Otherwise, we would have to add two more Lagrange
multipliers, associated with gradients of the reformist factions, to the set of
unknowns.) A PUNE is therefore a policy for each party such that no party,
given the policies of the other two, can find another policy to which both its
militants and opportunists agree to deviate. The necessary conditions are: there
exist policies C, L, and R and non-negative numbers X, ¥¢, X1, ¥, Xz, and yp
such that

(11.14a) —Vg(C) =x.VVo(C) + Ve (C, L R),
(11.14b) —Vg(L) =x, V¥, (L) + y,V,7,(C, L, R),
(11.14¢c) —VgZ(R) = xzxVIR(R) + ygrVrx(C, L, R),
and

(11.14d) 2(C) =0, g() =0, g(R)=0.

Here

. 7t 07y 0T
Vet = ( . cL - cL Ma) ’
We  omc c
with similar expressions for Vzr; and V.
These constitute twelve equations in fifteen unknowns. Consequently, we can
expect to find a 3-manifold of PUNEs.

11.4.3 THE CHOICE OF F, AND E,

Since W + x, W, — x, M; + y, and My — y are supposed to be numbers in
the interval [0, 1], we should choose the probability measures which govern the
behavior of the random variables x and y to have finite support—more pre-
cisely, support consisting of some proper subinterval of [—1, 1]. Unfortunately,
if we do so, the formulae (11.11-11.13) become very complex: for example,
regarding (11.12), the precise analytical representation of 7; depends upon
the relationship of the numbers D, A,(x), and N, (x) to the boundaries of the
supports of F, and F,. Even choosing F, and F, to be uniform distributions
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causes there to be approximately a dozen different cases for the (differentiable)
functional form of 7, on a dozen elements of a partition of the domain. This
renders calculation of equilibria impractical, to say the least.

The way to circumvent the problem is to choose probability distributions
with support on the whole real line. Then there will be a single differentiable
expression for each of 7, 7}, and 7. This is what I have done. To be specific
I chose F, and Fy, the distribution functions, to be logistic distributions on the
real line:

1
(11.15a) F,(x;a,b) = , and
1+ exp ( (x= “))

1
1+exp< o= C)>

(11.15b) F,(y;¢,d) =

Discussion of the choice of the parameters a, b, ¢, and d is briefly postponed.

Substituting into (11.11), (11.12), and (11.13) from (11.15a,b) gives explicit
formulae for the probability functions. There is, however, a problem of com-
plexity. For careless choices of the parameters a, b, ¢, and d, the derivatives of
the expressions for 7, ;, and 7, have no closed-form representations—and
these derivatives enter the equations (11.14a,b,c) that we must solve. Moreover,
solving these equations by Newton’s method requires taking derivatives of these
derivatives—an impossibly time-consuming task, if the gradients themselves
have no closed-form representations.

This problem can, however, be resolved by careful choice of (a, b, ¢, d). The
first step is to introduce the following change of variable in equations (11.11),
(11.12), and (11.13):

y = e_()%).
We may then write’

1

(11.162) 7oy = eSS +V)2d

9. See the appendix to this chapter for the derivation of formulae (11.16a,b,c).
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—(D-a)
e b

11.16b =1- dv — dv,
(11160 7, f(1+mvf</4>(1+v)2 ’ /(1+mv’<><1+v>2 ’
0

—(D-a)
b

e

and

—(D—a)
e b

o0
1 1
11.16 = d v,
( ) T / (1 + yrev X2 (1 +v)? ' / (1 + ypev®/H (A +v)? !

0 —(D-a)
e b
where
—Acp —2a0 ¢
YcL = €Xp ( d + d)
—Ap,—aw ¢
YrL = €Xp < 2u1d + d)
(11.17)
—Apctaw ¢
Yrc = €Xp ( ud + d>
' 2w b
=

Notice that if K = 4, then all the integrands in formulae (11.16a,b,c) become
rational functions of v, and hence can be integrated in closed form, thus
allowing us to compute closed-form expressions for the required gradients of
Tep> Tp> and .

We now choose a = ¢ = 0. This sets the means of F, and F, equal to zero.
What remains is the choice of (b, d). I chose (b, d) to satisfy, along with a third
variable, z, the following three equations:

F,(}:0,b) — F(550,b,) =2

(11.18) F,(5:0,d) —F(5:0,d,) =2

2 b _
() =+
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For the 1933 German values of (w, i), the solution is
b=0.00893, d=0.0542, z=1-10""°,

If the computer is indeed accurate to sixteen places, then with these choices
of the parameters (a, b) and (c, d), x will lie outside the interval (—%, %) only
with probability 107'¢, and y will lie outside the interval (—1, 1) with the
same probability. This means that the numbers W + x, W, 4+ y, M; — y, and
My, — y will essentially always be “legitimate” population shares.!® The third
equation in (11.18) sets K equal to four.

11.4.4 COMPUTATIONAL PROCEDURE

We solve the equations for a PUNE as follows. Solve two equations of (11.14a)
for (x¢, y¢); solve two equations of (11.14b) for (x;, y;); solve two equations of
(11.14c) for (xg, yr)- Solve the three equations of (11.14d) for m, m;, and wy,
respectively. This leaves three equations in the six unknowns we, €., w;, £},
ty, and €. My procedure was to choose values of w, w;, and my randomly in
the interval [1, 1.5], and then solve the three remaining equations for the three
remaining unknowns. We then check the values of the (x;, y;, Xc, Yo» Xp»> ¥r):
if they are non-negative, we have a PUNE. This calculation constitutes one
iteration of the program.!!

Tables 11.7 and 11.8 summarize the results for Sweden and Germany. The
central observation from Table 11.7 is unsurprising: the presence of the Com-
munist Party dramatically reduces the advantage that the Socialists have over
the Right. In both Sweden and Germany, the probability that the Socialists win
is about 8%, contrasted with probabilities of greater than one-half in the two-
party, three-class model. In the three-party case, the probability that some left
party wins a plurality [1 — 7] is less than 20% in both Sweden and Germany,
much smaller than the probability of Left’s winning in the analogous two-party

10. Indeed, graphing the density functions of F and F, shows that, for all practical purposes,
x and y lie in the interval (—0.1, 0.1).

11. Even with the efforts I made to produce simple expressions for the probability functions,
it takes a work station (vintage 1998) approximately four hours to perform 100 iterations of
this program, written in Mathematica 3.0. I supply the Jacobian of the system to the FindRoot
subroutine. The three-party problem is much more complex than the two-party problem.
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Table 11.7 The three-party probabilities

PUNEs

B Bk Y Ta Oc W OL Tr Or Vg Vp Vg /100

Germany .5 .5 1.5 .768 .208 .082 .123 .809 .239 .333 .317 .349 31
Sweden S5 .5 1.5 725 .240 .080 .136 .831 .256 .331 .321 .348 70

Table 11.8 The three-party PUNE policies

B Bk v w¢ mc bc  wp mp £ wgp mp Ly

Germany 5 5 1.5 134 077 080 1.25 048 149 0.69 1.19 1.43
Sweden S5 5 15 129 074 093 1.25 044 122 076 1.22 1.30

model.!? With a caveat concerning my change in the formulation of uncertainty
between the two-party and three-party models, the conclusion is that the pres-
ence of a Communist party dramatically increases the probability of a Right
victory.

The expected vote fractions of the three parties are, however, almost equal.
Although I do not report standard deviations on the v variables, they are very
small. No party, in any PUNE, has an expected vote fraction outside the interval
(0.30, 0.36). As in the two-party model, probabilities of victory vary much
more than expected vote fractions.

Finally, what is the probability that the two left parties together win a majority
of the vote? This is the probability that Right wins a minority, which is

% M A L,—0.5
Prob[w R+ UM+ (A +a)Ly <y:|:

u

- F, |:a)WR—|—,uMR—|— (A +a)Ly —0.5; ,d] ‘
w

It turns out that in all PUNEs, the left parties together win a majority with
a probability that is indistinguishably less than one. This is not a surprise,
given that in expectation each party wins about one-third of the vote. Counter-

12. Analogous in the sense of sharing the parameter values (B, Br, ¥).
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theoretically, in Germany the Nazi Party won 43.9% of the vote in the 1933
Reichstag elections, while the Communists and Socialists together won only
30.6% (Hamilton 1982, 476). However, there were more than three parties in
that election.

Table 11.8 presents the average values of the policies in the PUNEs found.
Here there are no surprises. As would be expected, the Communists offer more
on average to the workers than the other two parties do, the Right offers more
to the middle class than the other two parties do, and the Communists offer
least to the peasantry. The model bears out our intuitions.

Although I do not report the standard deviations of the parties’ policies
over the PUNE that I found, I present, in Figures 11.2a, 11.2b, and 11.2¢, the
projections of the 70 PUNE:s, for the Swedish run, onto the (w, £) plane. We ob-
serve that the PUNEs are quite concentrated in the policy simplices, and so the
average policy values reported in Table 11.8 are reflective of the typical PUNE.

%o Three-party model
3.0
2.5 1
2.0
1.5

1.0 i,

oF

0.5 1

T T T T Wwc
0.5 1.0 1.5 2.0

Figure 11.2a Communist policies in the three-party model, projected
onto the (w, £) plane
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Figure 11.2b

Socialist policies in the
three-party model, projected
onto the (w, £) plane

Figure 11.2¢

Right policies in the three-
party model, projected onto
the (w, £) plane
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11.5 Conclusion

Our analysis provides strong but not conclusive support for Luebbert’s theory
of regime choice in European countries during the interwar period. The sup-
port is strong because Luebbert’s claim is true for most parameter vectors of
our model, and moreover, Luebbert’s mechanism appears also to hold (that
is, the Left sustained lower probabilities of victory when class struggle in the
countryside was active because it proposed to give a lot to the agricultural prole-
tariat and only a little to the landed peasantry). The support is not conclusive,
because there are parameter values of our model for which Luebbert’s claim
is false. Finally, we undertook some three-party analysis. Although the results
were not surprising, they show that the PUNE concept yields a tractable model
with many parties as well as with many issue dimensions.

We assumed that voters were interested only in their economic fortunes:
we have relegated noneconomic interests to their influence on an unstudied
random variable that affects the fractions of classes that vote for policies.
Perhaps this assumption is not so disturbing to some, although it surely is
not uncontestable. When voters chose between Socialists and Communists
in Germany, there was surely more at issue than the policies those parties
announced concerning income distribution. A vote for the Communists was
implicitly a statement of sympathy with the USSR—that is, a statement with
ideological as well as economic content. Thus, in reality, I do not believe that
the Communists had a .77 probability of defeating the Socialists in Germany, as
Table 11.7 says.!? That is because many citizens voted against the Communists
for reasons other than economic ones. To model this would require adding
another dimension to the policy space—say, the party’s posture toward the
USSR. Doing so would certainly be tractable, in our model, but I have not
pursued this tack for lack of data that would enable me to calibrate citizen
preferences on the issue.

Finally, I must remark that the Right has been modeled, here, as a conserva-
tive party which represents the propertied classes. There is nothing in the model
that captures the fascist nature of the victorious parties in Germany, Italy, and
Spain. This analysis, therefore, has nothing to say about why fascism, rather
than traditional conservatism, became the scourge of Europe in the interwar
period.

13. In the four Reichstag elections held between 1930 and 1933 in Germany, the Communists
(KPD) received between 53% and 83% of the Socialist (SPD) vote. (See Hamilton 1982, 476.)
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11.6 Methodological Coda

It is fitting to ponder, at the end of a chapter like this one, what value is
added, or can be added, by a social science approach to a complex historical
question. First, do we learn anything from Luebbert that we did not learn from
a more classic historical analysis, and second, do we learn anything from the
formalization of Luebbert’s theory that I have proposed, using the concept
of party-unanimity Nash equilibrium, that we did not learn from Luebbert’s
informal analysis?

Luebbert abstracts from much historical detail. He characterizes the demo-
cratic struggle as one vying for the support of four classes, and he argues that
the Left lost to the Right when it made a certain strategic error. That error
was to support a very small class, the agricultural proletariat, thus alienating
itself from the natural enemy of the small class, the larger class of landed farm-
ers. However, this error was only made under a certain contingency—namely,
when the two agricultural classes were locked in struggle over division of the
pie. In countries where the relationship between the two agricultural classes
was relatively harmonious, the Left did not stir things up, and consequently it
was able to appeal to the landed peasantry as effectively as the Right was. Since
the urban working class was larger than the urban middle class, the Left then
stood a good chance of defeating the Right.

Naturally this cannot constitute a complete explanation for why Germany
became fascist and Sweden did not, because in each actual historical situation,
there were many other variables which are ignored by the analysis, and even if
Luebbert has located the most important general mechanism—more impor-
tant, say, than the role of religion or of anti-Semitism—it is always possible that
a particular variable in a particular country—say, the nature of the armistice at
Versailles—was of overwhelming importance. The claim of the abstract argu-
ment can be at best the following: that if we observe a large sample of countries,
then we should observe Left victories more often in the subsample where the
agricultural class struggle was quiescent than where it was active. The justi-
fication of this claim is that, on average, the idiosyncratic characteristics of
countries, which is to say the characteristics that have not been modeled, will
“average out.”

What does the formal analysis with PUNE add to Luebbert’s abstraction? I
think, principally, it shows that it was not a coincidence that the Left supported
the agricultural workers, thus alienating the peasantry, when agricultural class
struggle was active. This was, if you will, a consequence of the factional in-
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traparty struggle and, in particular, the role of the militants in the Left. The
opportunists in the Left would, presumably, have been happy not to have sup-
ported land reform, but the militants would not settle for that. The equilibrium
analysis shows that, given parties with factions guided by rather simple and
clear motivations, the Left will win with smaller probability in a country where
agricultural class struggle is active than where it is passive, ceteris paribus.
In this sense, the analysis instructs us not to view Left support for land re-
form as a tactical error: it was part and parcel of the historical development of
social democratic parties, which emerged in every case with militant factions—
factions in the absence of which these parties might well have lost their socialist
character. Thus, imagining a social democratic party without a militant faction
may well be equivalent to imagining a nonsocialist party.

That ceteris paribus phrase is, to be sure, what distinguishes the methodol-
ogy of the social scientist from that of the historian: the social scientist wants,
above all, a controlled experiment where aspects of the environment which he
or she deems secondary to the main explanation are held constant; while for the
historian, the interest lies in the distinguishing details between situations. Nei-
ther method dominates the other: each, that is, adds value to the explanation
provided by the other.

How correct is Luebbert’s explanation? Has he found the best explanation
of the genesis of highly differentiated political regimes in the interwar period,
or does his explanation simply predict, fortuitously, what actually occurred?
The final verdict, I think, must lie with the historian. For the social scientist
begins by excluding much information which is available about the histori-
cal events in question, before her story commences. Abstraction is, in other
words, a process of the destruction of information, a process embarked upon
in the hopes of revealing an underlying skeleton not otherwise perceptible. And
what guides the social scientist in deciding what information to destroy or ig-
nore is not theorized—it is, simply, intuition. That intuition is, one hopes,
based on inductive reasoning from many other modeling exercises deemed
to have been successful. I believe that the historian must have the final word,
because he, at least in principle, begins by not ignoring anything. (Whether
any practicing historian actually works this way is unknown to me; histori-
ans, too, doubtless have their theories which serve to restrict the information
they must examine.) Nevertheless, the adjudicating historian must be one who
is not averse to the abstract method as such, one, that is, who assents to the
view that at least in principle social science can shed light on the evolution of
society.
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I. The Derivation of Formulae (11.12) and (11.13)

(1) The event that “L wins” is the union of the two events “L defeats R defeats
C” and “L defeats C defeats R” Accordingly, the probability that “L wins,” 7, , is
the sum of the probability that “L defeats R defeats C,” & L(D, and the probability
that “L defeats C defeats R,” JTL(z).

(i) We compute nL(l) first. The event “L defeats R defeats C” is the intersection
of the event “L defeats R” and the event “R defeats C.” A simple computation
shows that the event “L defeats R” is {y : y > A,(x) = (w/2u)x + Ag /21},
and the event “R defeats C”is{y : y < A;(x) = —(w/u)x + Apc/ ). Therefore
the event “L defeats R defeats C” is {y : A,(x) <y < A, (x)}, and this event is
nonvacuous iff A,(x) < A;(x), or equivalently iff x < D = (Az, — Agp)/3w.
Hence the probability that “L defeats R defeats C” is

D Ai(x)
m = / f dE, (y)dF, (x).

—00 Az(x)

(ii) The probability that “L defeats C defeats R” is computed in a similar
manner. Note that the event “L defeats C defeats R” is the intersection of two
events, “L defeats C” and “C defeats R.” A simple computation shows that the
event “L defeats C” is given by {y : y > N,(x) = Qw/u)x + A/}, and the
event “C defeats R” is {y : y > A, (x) = —(w/u)x + Age/1}. Hence the event
“L defeats C defeats R”is {y : y > max{A, (x), N,(x)}}. Note that N, (x) > A, (x)
iff x > D = (Apc — A¢p)/3w. Hence the probability that “L defeats C defeats
R”is

This appendix was prepared by Woojin Lee.
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D oo
= / / dE,(y)dF, (x)—i—/ / dE,(y)dF, (x).
D Nx(x) —00 A1(x)

Now, by combining (i) and (ii) and using the fact that

D Ai(x) D o
[ [ awore f / ar,par0 = [ [ droaew,
—00 A (x) —00 Aj(x) —00 Ay (x)

we have the probability that “L wins”:

SO / [ dE, () dE(x) + / f dF, (y)dE, (x),

—00 Az(x) D Nx(x)

which is the formula (11.12).

(2) The event “R wins” is the union of the two events “R defeats L defeats C”
and “R defeats C defeats L.” Accordingly, the probability that “R wins,” 7, is
the sum of the probability that “R defeats L defeats C,” nzgl), and the probability
that “R defeats C defeats L,” (2).

(i) The event “R defeats L defeats C” is the intersection of the event “R defeats
L” and the event “L defeats C.” A simple computation shows that the event “R
defeats L is {y : y < A, (x) = (w/2u)x + Ap; /21}, and the event “L defeats C”
is{y:y > N,(x) = Qw/uw)x + A /). Therefore the event “R defeats L defeats
C”is{y: N,(x) <y < A,(x)} and this event is nonvacuous iff N, (x) < A,(x),
which is equivalent to the condition thatx < D = (Ag- — A;)/3w. Hence the
probability that “R defeats L defeats C” is

D Ax(x)

my) = f / dE, (y)dF, (x).

—00 Na(x)

(ii) The probability that “R defeats C defeats L” is computed in a sim-
ilar manner. A simple computation shows that the event “R defeats C” is
given by {y 1y < A;(x) = (—w/u)x + Agc/1}, and the event “C defeats R”
is{y:y <N,(x) = Qw/u)x + Ay /1t}. Hence the event “R defeats C defeats
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L” is {y : y < min{A, (x), N,(x)}}. Since N,(x) > A,(x) iff x > D = (Ap—
Acp) /3w, the probability that “R defeats C defeats L” is

oo Aj(x) D Ny(x)
= / f dF,(y)dF, (x) + / / dF,(y)dF, (x).
D —oo -0 —©

Now, by combining (i) and (ii) and using the fact that

D Ax(x) D Na(x)

/ / dE,(y)dF, (x) + / / dF, (y)dF,(x)
—00 Nj(x) —00 —00
D Ax(x)
= [ [ amare

we have the probability that “R wins”:

0o Aj(x) D Ax(x)

mr=ny + ) = / / dF,(y)dF, (x) + / / dF,(y)dF, (x),
D —

—00 =0

which is the formula (11.13).

II. The Derivation of Formulae (11.16a, b, ¢)

We chose the logistic distribution functions on the line. The distributions are

1 1
F.(x;a,)= ———— and F,(y;¢,d) = ———.
o ) 1+ exp(—*%*) Y6 d) 1+ exp(—1)

The corresponding density functions are

exp(—*7%)
d(1 4 exp(—5))?

exp(—*5%)

fx(X; a, b) = b(l + eXp(—J%))z

and [ (y;c,d) =
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(1) The probability that “C defeats L” is

o0 Na(x)

7TCL=/ /dFy()’)de(x)

—00 —00

1 exp(—*7%)

00
_/ 1 Na(®=cy h(1 _ X—a\\2 X
. + exp(—T) 1+ eXP( b )

Letv =exp(—(x — a)/b). Then dv/dx = exp(—(x — a)/b(—1/b) = —v/b, and
v € (00, 0) asx € (—o0, 00). Using the fact that exp(—x) = exp(—a)vh, we have

N. - A

o

Ag
- (_ pud ud
Letting
A ¢ 2aw
= —_— - — — d K=b
ra=ew (-2 4§ -2
we have

Now

oo

/ ]
K dV.
0

1 v bd
1+ yovE b(1 +v)? v
o0

o0
o / 1 exp(—*5%) .
)1 exp(— R8I (1 + exp(—559))?
—00
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(2) The probability that “L wins” is

D oo oo

v = / / dE, () dF(x) + / / dF, (y)dF, (x)

—00 Ay (x) D Ny(x)

=1-

D X—a
[,
Jo1T exp(—AZ(’;)_c) b(1 + exp(—*3*))?

o0

o e
S 1t exp(—R2G=) b1+ exp(=554)%

Let v = exp(—(x — a)/b). Then dv/dx = —v/b, and v € (00, exp(—(D —
a)/b)) as x € (—00, D). Using the fact that exp(—x) = exp(—a)vh, we have

Ay(x) — ¢ _ App ¢ aw by
exp( J >—exp< 2,ud+d 2id v .

Letting
. RL c aw and K 2w
=exp|—4+-— — =b—,
YR=SP\ T d T a7 2ud ud

we have

A _
exp (_ Z(X(?l c) -
Hence

D X—a
/‘ 1 exp(—33;°)
1 exp(—#2=) b1+ exp(—5)?

o0
1 1
= dav.
/ 1 +)/RLVK/4 (14 v)?

D—a
b

e
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Similarly, using the fact that exp(—(N,(x) — ¢)/d) = y; v, we have
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(3) The probability that “R wins” is
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Letting v = exp(—(x — a)/b) and K = b(2w/ud) as before, we have
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A Three-Class Model of American Politics

12.1 Introduction

There is no labor or social democratic party in the United States. In this chapter
we offer a partial explanation for why this is so, based upon a simple class model
of politics.

We assume that the polity is partitioned into three classes: large capitalists
and their agents, workers, and petite bourgeoisie. The large capitalists and
their agents own and/or run a large firm, which uses as inputs labor and
infrastructure, the latter being provided by the government. All workers work
for this firm. The petite bourgeoisie are small shopkeepers, who work for
themselves and do not hire outside labor. The only input in their production
function is their own labor (no government infrastructure).

The policy space is two-dimensional. The polity must decide upon a uniform
tax rate levied on all incomes, and on the division of tax revenues between
spending on infrastructure and a lump-sum transfer payment to all citizens.

Per capita incomes of the three classes are arranged as follows: the capitalists
have the largest per capita income, and the workers the smallest. Both the
capitalists and the petite bourgeoisie have income greater than mean income.
The capitalists and their agents each receive an equal share of the profits of the
firm.

The policy preferences of the three classes are, roughly, as follows. Workers
want taxes, and in general they desire both spending on infrastructure, and
transfer payments. They benefit from infrastructural spending, which raises
their marginal productivity in the firm and hence their wage. Capitalists want
taxes and infrastructural spending, since without infrastructure there is no
production and no profits. They do not want transfer payments. The petite
bourgeoisie want no taxation—they do not benefit from infrastructure and
since their income is above the mean, they lose from the financing of transfer
payments.
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There are two political parties, the Democrats and the Republicans. Both
capitalists and petite bourgeoisie belong to the Republican Party. What we shall
be concerned with is the composition of the Democratic Party. We assume that
workers belong to the Democrats, and we shall model two scenarios: (1) that
only workers belong to the Democratic Party, that is, that it is a labor party,
and (2) that both workers and capitalists belong to the Democratic Party.

More precisely, we will model the Republican Party as containing five fac-
tions: capitalist militants, capitalist reformists, petite bourgeois militants, pe-
tite bourgeois reformists, and opportunists. In Scenario One, the Democrats
contain three factions—worker militants, worker reformists, and opportunists,
and in Scenario Two, the Democrats contain five factions—the three just
named, plus capitalist reformists and capitalist militants.

In each scenario, we model political equilibrium as PUNE, where, of course,
all factions of a party have to agree for a deviation to occur. As the reformists are
again gratuitous, we can model the Republicans as containing three important
factions, and the Democrats as containing either two or three, depending upon
the scenario.

I believe that, in American reality, the Republican Party is a coalition of petite
bourgeois and large capitalist elements, and the Democratic Party is a coalition
of worker and capitalist elements. (Of course, this is an approximate statement,
whose validity is in large part constrained by the stylization of a three-class
characterization of society.) The concept of infrastructure is meant to capture
the fact that large firms depend upon government investment more than small
business does. (This could be challenged.) Our modeling exercise intends to
show that the capitalists are better off in the political equilibrium in which they
are represented in the Democratic and Republican parties than in the political
equilibrium where they are represented only in the Republican Party. If there
is free entry of classes into parties, this will explain why the Democratic Party
is not a labor party in the United States.

We shall discover that the capitalists do indeed fare better when they are
represented in the Democratic Party. Why, then, do capitalists not join labor
parties in all countries? The answer must be that there is not, in general, free
entry of representatives of classes into parties.!

1. Michael Wallerstein comments that capitalists are represented in European social democratic
parties.
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12.2 The Model

The population distribution of workers, petite bourgeoisie, and capitalists is
given by (w, p, 1 — (w + p)), where w is the fraction of workers and p is the
fraction of petite bourgeoisie; the remainder are capitalists and their agents.
There is one good, produced both by the petite bourgeoisie and by the large
firm. The production function of the large firm is

¢(G, L) = BG"L°,

where G is units of government infrastructure per capita, L is the amount of
labor per capita, and g is level of production per capita. Each petite bour-
geois produces an amount « in his own shop. At full-employment economic
equilibrium, workers earn their marginal product, which is 8BGw’~!, and
each capitalist receives as income his per capita share of profits, which is
(1= 8)BG) /(1 = (@ + p)).

The policy vector is (a, G, T), where a is the uniform income tax rate, G is
infrastructural spending per capita, and T is the lump-sum transfer payment
per capita. The policy space is in fact two-dimensional, since there is a budget
constraint:

(12.1)  a@G,w)+ pa)=T+G.

Each individual desires to maximize his after-tax income. Thus we may write
the utility functions of typical members of the three classes as:

vWa,G) =1 —a)sBG7’ ' + T,

PB _
(12.2) voa, G =0—-—aa+T,

c o (1 —8)BG"’
vv(a, G)=(~1 a)—l—(a)—i—,o) + T,

where it is understood that we express T as a function of a and G, using (12.1).

We next describe the probability function 7. We use the finite-type model
of uncertainty. Let ¥ and ¥ be the platforms of the two parties. Define the
numbers a' and a? by

W/ R PB/._R Cr+R
alzwf<v . )), and az:pf<w)+(1_(w+p))f(v (’ )),

B e
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where f is the function defined in equation (2.14). As in section 2.4, we now
define (%, ) as the probability that a'e! + a?€? is positive, where (¢!, €2)
is uniformly distributed on the positive quadrant of the unit disc in R? (see
Figure 2.2 and equation (2.18)).

12.3 Characterization of PUNEs

We shall take the two-dimensional policy vector to be (4, G), and express the
budget constraint as h'(a, G) > 0, where

(12.3)  h'(a, G) = a(g(G, ®) + pa) — G,

which says that the transfer payment must be non-negative. In addition, we
have the constraints on tax rates:

0<a<l.
This may be expressed as #*(a) > 0 and h*(a) > 0, where
W @)=a and K@) =1-a.

We first characterize PUNEs under Scenario One, where the Democratic
Party is a labor party. The equations (8.10a) and (8.10b), modified to admit
the additional factions to the parties when appropriate, take the form

—Vyr =x"VoV X'V 4 X*VE 4 £V,
(12.4)
Vet = y°'VvC + 20V L yIVR 42V + VIR,

A PUNE occurs when we have a solution to these equations, where the La-
grangian multipliers are all non-negative, and the “complementary slackness”
conditions hold (that is, x' > 0iff T? = 0, x2 > 0iffa® = 0, x> > 0 iffa® = 1,
y!' > 0iff TR = 0, and so on).

Similarly, at a PUNE under Scenario Two, we have the following equations:

—Vpmr = VY + wOVyC + xIVR + x2VR? + XPVE,
(12.5)
Ve = y°Vv© + 20V 4 VR 4 2V 4+ P VR

A PUNE of this type occurs when the Lagrangian multipliers are all non-
negative, and the complementary slackness conditions hold.
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Solving (12.4) and (12.5) requires investigating a number of cases. We reason
as follows. The constraint 4> will never be binding for either party ata PUNE—
both parties, that is, will propose positive tax rates, for a zero tax rate means zero
income for both workers and capitalists. We thus have the following possible
cases for each party, ] = D, R:

(i)d <land T/ > 0;
(i) =1and TV > 0;
(ii) @ <1and TV = 0;
(iv)a/ =1and TV = 0.

We now eliminate (iv) as unlikely for both D and R, (ii) as unlikely for R, and
(iii) as unlikely for D. Thus we are assuming that a solution for the D policy is
of either case (i) or case (ii), and a solution for the R policy is of either case (i)
or case (iii). This gives us four types of equilibria to search for.

Suppose we are looking for a PUNE in Scenario One where D has a policy of
case (ii) and R has a policy of case (iii). Then (12.4) reduces to

~Vprr =5V + VI,
(12.6a)
Vet = y'Vv© + 2°VvPE 1 ylva!,

In addition we have the two equations:
(126b) a’=1, K(a* G"=o.

These constitute six equations in nine unknowns (the four policy variables plus
the five Lagrangian multipliers). Indeed, in every case, under Scenario One, we
will have three more unknowns than equations.

We search for solutions of this system of equations as follows. We can solve
for the variables x%, x°, y°, and z° from the four equations making up (12.6a),
in terms of the other unknowns. ( This is easy, because the equations are linear
in the Lagrange multipliers.) a” is already specified by (12.6b). We solve the
second equation in (12.6b) for GR in terms of a®. We now specify a®, GP, and
y! randomly where a® is chosen less than one, G? is feasible given a?, and y'
is chosen to be positive. We check whether x°, x°, °, and z° are positive: if so,
we have found a PUNE. What has been described is one iteration of our search.
We then repeat this process many times.

A similar procedure is used for solving equations (12.5).
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12.4 Results

We specified the data of the model as follows:
(@, p,8, 7, B, ) = (.55, .40, .6875, .15625, 8940.72, 50000).

Thus the capitalists and their agents (firm managers, corporation lawyers,
accountants, and so on) make up 5% of the polity. The data vector is justified
by the observation that it delivers equilibria in which the income distribution
seems reasonable (see below).

As we discussed earlier, we search for PUNEs, under each party-membership
scenario, in four different cases. In fact we found PUNEs, under Scenario One,
in only one case, and PUNEs under Scenario Two in only two cases. We report
the characteristics of these solutions in Tables 12.1 and 12.2. In each case where
PUNE:s exist, there is a continuum of them. We performed 2,000 iterations
for each type of equilibrium; we report the number of PUNEs we found. The
policy values reported are averages of the policy values in the PUNEs we found;
similarly, the reported value of & is the average probability of Democratic
victory, and the reported values of vW_ vPB and vC are the average expected post-
tax incomes, that is, averages of the values 7v/(a”, GP) + (1 — m)v/(a, G®)
for ] = W, PB, and C, in the PUNEs found.

Table 12.1 reports the one type of PUNE that exists under both member-
ship scenarios. The salient observation is that when the capitalists join the

Table 12.1 PUNEs where TP > 0,4 <1, TR =0,and a® < 1

No. of
Scenario PUNEs aP GP alk GR T yW yPB vC
D = {W} 617 375 2739.  .062 2543. .81 27,172 44,428 96,951

D={w, C} 149 215 4145.  .057 2306. .77 25,388 44,741 111,963

Table 12.2 PUNEs where TP > 0,aP <1, TR > 0,and a® < 1

No. of
Scenario PUNEs 4P GP alk GR P oW PB C

D ={Ww, C} 25 230 4834. 139 2794. .55 25,773 44,529 111,455
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Democratic Party, the tax rate the Democrats propose in equilibrium falls sig-
nificantly, the amount of government expenditures on infrastructure increases
significantly, and the post-tax income of the capitalists increases significantly.
Table 12.2 reports the other type of PUNE that exists, but it only occurs in the
scenario when the capitalists are in both parties.

The one-line summary of these exercises is that the expected income of
capitalists is approximately 15% higher, on average, in political equilibria in
which capitalists are represented in both parties than in political equilibria in
which they are represented only in the Republican Party. If there is free entry
into parties and capitalists can organize, they should join the Democratic Party.

We can compute other characteristics of these equilibria. In the equilibria
of the first row of Table 12.1, national income per capita is $40,382 while the
government lump-sum transfer, which might be viewed as the model counter-
part of government expenditures on social services and transfer payments, is
$10,048 per capita, constituting about 25% of national income.” In the equilib-
ria of the second row of Table 12.1, national income per capita rises to $41,344,
while government expenditures on social services fall to $3,718 per capita, or
only 9% of national income. Capitalist participation in the Democratic Party
raises national income but results in drastic cuts in social services.

It is furthermore noteworthy that even when the Democrats are a labor
party, the tax rate they propose, on average, in PUNE, is 37.5%—surely not
expropriationary—and this is despite the fact that there is no deadweight loss
from taxation in the model. (Neither capitalists nor workers abstain from par-
ticipating in production when the tax rate rises.) Moreover, workers constitute
an absolute majority of the citizenry in the parameterization in question. The
nonexpropriationary policy is ultimately due to the fact that not all workers
vote for the policy that is in their interest (recall our finite-type model of vot-
ing, used here), and to the presence of opportunists in the Democratic Party.

12.5 Conclusion

We have analyzed a stylized three-class model of the U.S. politico-economy.
Assuming that capitalists and petite bourgeoisie are represented in the Repub-
lican Party, we have shown that capitalists do significantly better (in terms of

2. In thinking about the real U.S. economy, recall that the per capita income figure derived in
the model should be compared with income per labor-force participant in actuality.
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income) if they belong to the Democratic Party as well, in contrast to the sce-
nario in which the Democratic Party is a labor party. If there is free entry into
parties, this may explain why the Democrats are not a labor party in the United
States.

Methodologically, this chapter shows that we can insert more factions into
parties, representing different interest groups in the population, and the PUNE
concept remains tractable.
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Endogenous Parties with Multidimensional
Competition

13.1 Introduction

With the exception of Chapter 5, we have taken the preferences of parties to
be exogenous. In this chapter we apply the method of Chapter 5 to derive
the preferences of parties endogenously from the distribution of types and the
political institution of elections, in the multidimensional model.

We shall, however, derive not parties as they actually are in capitalist democ-
racies, but parties which might arise in an ideal of perfectly representative
democracy. The distinction between these two kinds of party is due, in large
part, to the institution of private financing of political parties. In real-world
democracies, the political positions of parties are strongly influenced by the
policy preferences of major financial supporters. The perfectly representative
democracy is, for present purposes, defined as one in which every citizen be-
longs to one party, and each member has an equal influence on the preferences
of the party to which he belongs.

This chapter presents our most complete theory of political competition, as
it derives from the data of citizen preferences and endowments the two parties
that will come to be, and the political equilibria that will be observed, all in a
multidimensional context. Therefore this theory can be seen as replacing the
“median-voter” model, which also derives from those primitives a predicted
political equilibrium. The advantage of our theory, to belabor the point, is that
it provides a complete explanation of political competition while taking the
institutions of parties seriously, and when competition concerns more than
one dimension of policy.

After presenting the theory, we shall derive perfectly representative parties
for two examples. The first uses the National Election Surveys to parameterize
the preferences of the U.S. polity, where we take the issue space to consist of
two dimensions—taxation and race. We compute parties endogenously, and
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political equilibrium. The second example is based on the model of progressive
taxation developed in Chapter 9: here, we endogenize the parties of the model
of that chapter.

13.2 Endogenous Parties

The idea is a generalization of that presented in Chapter 5. Let the set of types
be H, the policy space be T, and the utility function of type h over policies
be v(-, h). Let the probability distribution of types be F. If (t!, t?) is a pair
of policies, then the set of types that prefer 7! to 72 is denoted Q (!, 72). We
adopt the error-distribution model of uncertainty, so that the probability that
! defeats 72 is

_FQ@, ) +B—-05
= 35

>

7(th, )

where 8 is a datum of the problem. Of course different definitions of = could
equally well be used.

A party-unanimity Nash equilibrium with endogenous parties (PUNEEP) is
a partition of the space of types into two elements that we denote L and R, a
utility function v* for the “party L,” a utility function v® for the “party R, a
PUNE (z%, t®) for the model of party competition with parties having those
two utility functions, such that every type in L weakly prefers t* to % and every
type in R weakly prefers 7% to L. Finally, v* is the average of utility functions
v(-, h) for hin L, and v® is the average of utility functions v(-, h) for h in R.

It should be remarked that we use the average of members’ utility functions
as the parties’ utility, instead of the utility function of the median member, be-
cause with multidimensional policy spaces there is in general no median ideal
policy. Of course averaging utility functions means that those functions must
be to some degree interpersonally comparable (to be precise, they must be car-
dinally unit comparable). An alternate definition of PUNEEP replaces the last
sentence of the above paragraph with “vl = v(-, h'), where h! is the average
type of L, and vR = v(-, hR), where h® is the average type of R.” We will use this
formulation in the examples below. This definition of party representative is
not fully satisfactory, for it does not model the process of intraparty competi-
tion for the preferences of the party’s militants and reformists, but we claim it
engenders a tractable theory of political equilibrium.
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In practice, there are two difficulties encountered in computing PUNEEP.
The first is that the set Q(t!, t?) should have a fairly simple structure, or else
computation of the function 7 and its derivatives is difficult. We must be able
to write 7t as a differentiable function so that the computer can solve the Farkas’
lemma conditions, which involve its derivatives. The second difficulty is that,
as before, it is generically the case that a 2-manifold of equilibria exist, and
some art must be employed in choosing the two parameters to randomize in
order to solve for equilibrium.

We illustrate the computation of PUNEEP with the two examples that follow.

13.3 Taxation and Race

A voter’s type is a pair (w, r), where w is her income and r is her racial view.
Preferences of voters over policy pairs (¢, p), where t is a uniform tax rate and
p is the government’s racial position, are given by:

(13.) v piwin) = (1= D= yOw+ 1= yOu— S0 —p),

where y is a fraction less than one and u is mean income. The term (1 — yt)
is a simple way of capturing the fact that labor supply is somewhat elastic with
respect to the tax rate; thus w is here interpreted as full-time income of the
individual, and y ¢ is the fraction of full-time GNP which is lost due to workers’
reducing their labor supply in the presence of taxation. This is a short-cut to a
fuller model in which preferences for leisure would be represented in the utility
function. Thus representing those preferences, and giving micro-foundations
to the effect captured above by y, would complicate the model in a way that
might obscure the computation we wish to elucidate.

We shall calibrate, in what follows, a distribution of types, F, a probability
measure on the type set H = [0, 0c0) x [0, 00).

Let tt = (!, p!) and R = (¢R, p®) be policies put forth by two parties, and
let o, and o, be the following functions of these policies:

L _R pt = p*
O'l(r > T ):(tR—tL)(l—}—)/—)/(tL—*—tR),
(13.2)
o (‘L’L ‘L’R)— M(l_V(tL“‘tR))
2(T5 =

A+y =yt +B)
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We may compute that, if & > tR, a type (w, r) prefers % to =% iff r <
U (w; v, ), where

ot + R o, w

(13.3a) W (w; rL, ‘L’R) =
2 ao; o0

a function that is linear in w. Thus Q(z%, &) is the set of all types that lie
beneath a straight line in the (w, r)-type plane. This is a set with a simple
structure, and hence we shall have a tractable form for the function 7.

For a given pair of policies tt = (£, pl) and t8 = (¢&, p®) let

,OL+,0R o, 1
— m=—.

(13.3b) b= ,
oo, ao,

Then the set of types who prefer T to TR is precisely the set of types beneath
the line r = b — mw. The average type of that set has components:

I winndrdy I oftnndrdw
13.4 L_ r<W(w ’ L_ r<W¥(w ’
(134) - w [ [ fw,rdrdw ' [ [ flw,rdrdw
W r<W(w) Wr<W(w)

where W (w) = b — mw, while the average type of the set who prefer 7% to t*
has components:

v{ \1{( ) wf (w, r)dr dw v{ \{( ) rf (w, r)dr dw
13.4b R_Wr>¥w ’ R_Wr>¥w .
(134b) W [ [ flw,r)drdw ' [ [ fw,rdrdw
W r>w(w) W r>w(w)

Here f is the density function of the probability measure F.

We shall below fit this model to U.S. data. In that fit, it turns out that the
endogenous party PUNEs we find all have the Right playing a tax rate of
zero. We therefore now write explicitly the equations for PUNEEP with that
constraint binding. Such a PUNEEP is a pair of numbers (b, m), a pair of
policies (z£, 7R), a pair of types ((wl, rt), (WX, %)) such that:

(R1) b and m satisfy equations (13.3b);
(R2) vt is the utility function of type (w!, r') and v® is the utility function
of type (wR, rR), where (wt, r') and (wR, rR) are given by (13.4a and b);
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(R3) tR=0;and
(R4) there are non-negative numbers x;, y;, and y, such that:

x, Vvt = v, (eh, 8
R/_R 1 L _R
Vv (@) 4+, 0 = Vi (t5, 7).

The reader will observe, by thinking through the definition of PUNEEP, that
conditions (R1)—(R4) characterize a PUNEEP where party R, which consists of
all types above theline r = b — mw, plays a tax rate of zero. The key requirement
is (R1), which tells us that every member of coalition L votes for (w’, rt) and
every member of coalition R votes for (wR, r¥).

13.4 Fitting the Model to U.S. Data'

We shall fit a bivariate lognormal distribution to U.S. data for our probability
measure F. A bivariate lognormal distribution is characterized by five param-
eters (m,,, M,, v,,, V,, ¥,,,), since its density is given by

fw,r;m, ) = exp[—%((log w,logr) — m)’

1
2| X |wr
2! ((log w, log r) — m),

where

m= (m,,m,) and E:[:W Vwr:|.

wr VT”

We estimated these parameters for a series of years by using the empirical dis-
tributions obtained from the data set of the National Election Surveys (NES),
compiled by the Institute for Social Research at the University of Michigan. We
chose “Family Income” (variable number 114) as the proxy for w, and “Respon-
dent’s Position on Aid to Minorities” (variable number 830) as the proxy for r.
The NES categorizes five different income groups according to percentiles,” and

1. The bivariate lognormal distribution in this section was estimated by Woojin Lee.
2. That s, (1) 0—16 percentile, (2) 17-33 percentile, (3) 34—67 percentile, (4) 68-95 percentile,
and (5) 96-100 percentile.
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also provides the nominal income intervals corresponding to these percentiles.
We transform the nominal incomes into the real incomes using the GDP de-
flators (chain-type price indexes for GDP with the base year of 1990) obtained
from Economic Report of the President, and represent an income interval as its
midpoint. In the NES, the racial position of each respondent is coded from 1
(government should help minority groups) to 7 (minority groups should help
themselves).?

We obtain the empirical distribution of traits by counting the number of
respondents for the 35 different pairs of (w, r) and dividing each number by
the total number of respondents. We learn from the empirical distributions that
there is a positive correlation between real incomes and high values of the racial
variable. We calculated, but do not report here, that the correlation coefficient
between w and r is positive each year, although its magnitude is not large.

For the bivariate lognormal distribution, it is well known that:

w,, = explm,, + 1v,],
My = eXp[mr + %Vr]’
(13.5) o = exp[2m,, + v, ](exp[v,] — 1),

0,2 =exp[2m, + v,](exp[v,] — 1),

cov (w, r) =expl[p,, + 1, + %(VW + vl (exp[v,,] —1).

The maximum likelihood estimators (MLE) of the bivariate lognormal dis-
tribution are used to estimate (u,,, /4, af,, O’rz, cov (w, r)), and then we solve
the above five equations for five unknown parameters, (i,,, M,, ¥, V,, ¥,,,)-
These estimates together with g, =7,,./(¥,,7,) are summarized in Table 13.1.

We calibrate our model with the 1984 data.

We take (o, 8, ) = (10, 0.1, 0.1) in the calculations that follow. The model
is now completely specified.

As I remarked, this model possesses PUNEEP in which both parties play
interior racial policies, the Left plays an interior tax policy, and the Right plays a

3. The NES question is as follows. “Some people feel that the government should make every ef-
fort to improve the social and economic position of blacks. Others feel that the government should
not make any special effort to help blacks because they should help themselves. Where would you
place yourself on the following scale? 1. Government should help blacks . . . 7. Blacks should help
themselves.” (No descriptive statements are associated with the intermediate numbers.)
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tax policy of zero. We now indicate how we find a solution satisfying conditions
(R1)—(R4) of the last section. We choose a pair of positive numbers (b, 11)
randomly. This defines a line in (w, r) space, as we have described. We next
compute the average types of the partition of H defined by this line, via (13.4a)
and (13.4b). This defines the two utility functions v* and v&, as required by
condition (R2). The first vector equation in (R4) (which is the condition that
says the factions of Party L cannot agree on an improving deviation) consists of
two scalar equations: solve the first one for x,. This leaves the second equation:
call it “eqnL.” Next solve the second vector equation in (R4) for y, and y, (this
equation system is linear in the Lagrange multipliers). We now have left three
equations—eqnL and the two equations of (13.3b): solve these simultaneously
for tX, p!, and pR. Now the Lagrange multipliers become numbers: check that
they are non-negative, and check that £ is in (0, 1). If so, we have found a
PUNEEP.

I have omitted, in this description, explanation of the computation of the
derivatives Vr. This is an exercise in calculus that need not detain us here.

Table 13.1 Bivariate lognormal parameters

Year m,, m, Vi 12 Vir Pwr

1970 3.29357 1.36013 379272 198197 .013936 .050831
1972 3.26156 1.34936 .360523 193763 .003107 .011757
1974 3.32864 1.37051 405046 .190215 .030641 .110389

1976 3.31863 1.36295 363150 .189987 .029640 112841
1978 3.33480 1.40374 .307867 .165845 .034380 152150
1980 3.37475 1.45160 353716 114527 .021443 .106539
1982 3.29339 1.41568 343194 133671 .016471 .076901

1984 3.37094 1.33077 326918 .147457 .029046 132294
1986 3.38109 1.41755 402292 132781 .004473 .019355
1988 3.37616 1.42167 417288 156757 .032214 125953

1990 3.35139 1.42184 415514 149531 .027464 .110181
1992 3.40018 1.47562 375699 130346 .020154 .091074
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We know that the set of types who prefer Left to Right has measure F({(w, r) |
r < b — mw}). This number is given by a messy double integral; it must be
differentiated with respect to the policies. Once we compute the form of this
derivative, Mathematica can compute it numerically for any set of policies.

Of course, we do not know a priori which, if any, of the policy constraints
will bind. Therefore, the author programmed six different versions of sets of
conditions analogous to (R1)—(R4), each corresponding to a particular set
of binding policy constraints. It turned out that only solutions of this type
were found. Although we have no proof, we suspect that all endogenous party
PUNE:s for this problem are of this form.

Table 13.2 presents a set of 50 PUNEEPs that were found in a run with 75
iterations. This high density of PUNEs was due to our choosing the random
elements (b, m) artfully, and that was possible only after locating the region of
(b, m) space where PUNEEP reside with a much coarser paving of the (b, m)
plane. The averages of the relevant magnitudes in this set of PUNEEPs are

(t5, pb) = (297, 3.44),
(t%, p%) = (0,4.72),
T =.626,
(wh, wh) = (27.92, 42.1197),
average expected tax rate = 0.209, and

average expected race position = 3.82.

The median values of w and r in the population are 29.10 and 3.78, respectively.

It bears noting that, although the Left almost always, in the set of PUNEEPs,
wins with probability greater than one-half, it is the Right that does not com-
promise on tax policy. (It can be computed that the ideal tax policy of every
member of Right is zero, while the ideal tax policy of most members of Left is
one. Only a very small fraction of types, in this model, have an ideal tax policy
that is greater than zero and less than one.) That the Left wins with probabil-
ity greater than one-half means that, in those PUNEs, more than half of the
voters belong to Left. So why does Left compromise and not Right? Could we
attribute this to the analysis of the model in Chapter 10; that is, does the critical
condition C2 of section 10.3 hold? We compute, for our bivariate lognormal
measure F, mean income is 34.2727, while mean income of those who have
the median value of the race trait is 34.1748. Thus C2 is false, but by a very
small amount. Indeed, these two numbers are close enough that our Chapter
10 analysis does not yield any predictions in this example.
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Table 13.2 Endogenous party PUNEs in the tax-race model of section 13.3

L ok (R ok T wh Wi
278473 3.42484 0 4.70675 62798 28.1008 41.8526
495909 3.40968 0 5.70585 .897914 29.4701 43.5609
.308556 3.46601 0 4.73978 .644001 27.823 42.4019
152177 3.39752 0 4.15032 450298 27.4459 40.5774
.350091 3.37865 0 5.18172 757974 29.0817 42.1635
.308922 3.41397 0 4.87176 674624 28.4139 42.0343
.0566689 3.40592 0 3.67896 .29876 26.5602 39.8463
344392 3.39761 0 5.086 733561 28.8206 42.2305
206995 3.45646 0 4.34143 523662 27.3115 41.5026
.555808 3.45223 0 5.70924 90019 29.1154 44.2874
566787 3.50239 0 5.52209 .855491 28.4886 44.6543
.190344 3.4877 0 4.24522 .500939 26.9318 41.6247
.505109 3.4669 0 5.46856 841385 28.7333 43.9748
390141 3.43055 0 5.17198 761088 28.6759 42.8248
354133 3.48796 0 4.86201 .681705 27.8154 42.9267
1427003 3.45601 0 5.22763 778366 28.5413 43.2882
465263 3.46501 0 5.33545 .807302 28.5963 43.65

310051 3.46877 0 4.73901 .64416 27.7983 42.4352
384391 3.51735 0 4.89546 69425 27.6174 43.3771
460548 3.48403 0 5.24974 786181 28.337 43.7333
.19373 3.50782 0 4.24091 .503859 26.7621 41.8299
414214 3.4371 0 5.24637 781788 28.7156 43.0646
400241 3.40665 0 5.30462 794634 29.0224 42.7614
281123 3.42828 0 4.71068 .629704 28.0799 41.8995
124686 3.52241 0 3.98462 429173 26.2686 41.4185
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Table 13.2 (continued)

/L ok R oR T wh WwR
.14601 3.412 0 4.11037 441119 27.2802 40.6361
.195529 3.49879 0 4.25711 506977 26.8697 41.7588
.0779044 3.42905 0 3.78269 .340872 26.5986 40.2136
290259 3.39222 0 4.84498 .663504 28.5421 41.7282
404896 3.45354 0 5.1518 757814 28.4681 43.0939
446194 3.48005 0 5.2137 776476 28.327 43.5956
.325883 3.50949 0 4.70813 .640843 27.4121 42.8758
.163665 3.52112 0 4.12414 471437 26.4823 41.7151
.168984 3.37248 0 4.26582 481425 27.8284 40.5283
.0349273 3.35044 0 3.54123 235378 26.6958 39.2021
.615623 3.47835 0 3.77833 916566 28.9652 44.886
.303223 3.40647 0 4.86654 671999 28.464 41.9351
311197 3.51271 0 4.66338 629224 27.366 42.7721
325215 3.42183 0 4.92234 .690303 28.4217 42.2253
.192404 3.36919 0 4.39117 .520406 28.0351 40.7174
323733 3.37083 0 5.07946 728171 29.0103 41.8853
382128 3.38942 0 5.29193 789481 29.1366 42.5048
20018 3.37946 0 4.41692 .530819 28.0055 40.8569
.0142047 3.36092 0 3.43625 20332 26.4079 39.1203
.179865 3.41798 0 4.26255 490725 27.4703 40.975
169577 3.50876 0 4.15251 477317 26.6274 41.6455
403549 3.43594 0 5.20766 771281 28.6775 42.9697
.0937643 3.35999 0 3.86792 .348054 27.2472 39.7754
279335 3.47855 0 4.60325 .606369 27.539 42.2591

264147 3.48566 0 4.5361 .587994 27.3975 42.1892
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13.5 Quadratic Taxation

In this section we calculate parties endogenously for the quadratic taxation
model of Chapter 9. We employ the model of that chapter, with one amend-
ment: we now substitute the error-distribution model of uncertainty for the
state-space model used there. We replace axiom B5 with:

B5 F(u)> 3.

If L = (a;, by) and R = (ay, by) are two tax policies, and Q (L, R) is the set of
two types who prefer L to R, we write the probability of Left victory as

FQULR)+B—3
2B )

(13.6) w(L,R) =

The reader can verify that the arguments of Chapter 9 go through with the
error-distribution model of uncertainty and assumption B5’. (Although this
sounds potentially tedious to verify, in fact it is very simple. All we have to note
is that deviations that increase the fraction of voters who prefer one policy to
another also increase the probability that the first policy defeats the second.)

Recall that both policies must be progressive in a strong PUNE: Figures
13.1 and 13.2 illustrate the two possible types of (strong) PUNE. Let us first
analyze the PUNE of Figure 13.1. The policy L = (a,, b;) satisfies the constraint
h,(a, b) = 0, where h,(a, b) = b + 2a, and the policy R = (ay, by) satisfies the
constraint h, (a, b) = 0, where h,(a, b) =1 — ap, /i — b. These two constraint
equations have been written so that the region of policy feasibility is h;(a, b) > 0
(see Figure 9.1).

Recall that if Left moves along the line LR from L the probability of victory
remains constant. Either party can increase its probability of victory (assuming
7 < 1) by moving into the half-plane indicated by the normal vectors drawn
at L and R in the figure. Defining Aa = a; — ap and Ab = b; — by, the normal
vector, denoted , is given by

n=(Ab,—Aa)’.

(The superscript T denotes the transpose of a vector.) (The slope of LR is
Ab/Aa.)

Recall that the utility function of type w is v(a, b; w) = a(w? — u,) + b(w —
w). Let the parties represent types w” and wR. (That is, the reformists and
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militants of the Left party have utility function v(-; w!).) Then the condition
for (L, R)’s being a (local) PUNE is

VdeRz,d;éO Vv(aL,bL;wL)-d>0 and Vh,-d>0=n-d<0

and Vv(ag, bp;w®)-d>0 and Vh -d>0=n-d<0.
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Hence, by Farkas’ lemma, (L, R) is a local PUNE if the following equations
hold:

(13.7a) —n=x,Vv(L; WL) +y,Vh,,
(13.7b) —n=xxVv(R; wh) + yrVhy,
(13.7¢)  hy(L) =0,

(13.7d)  hy(R) =0,

where x;, y;, xz, and yg are non-negative numbers. We may conveniently
rewrite (13.7a) and (13.7b) as follows. Define the matrices

M, = (Vv(ag, bjswh), Vhy), Mg = (Vv(ag, by wd), Vh)).
Then the Lagrangian multipliers are non-negative iff
(13.8a) M;'n<0 and Mp'n<o,

where “0” in these inequalities is the zero vector in RZ?, and A~! is the inverse
of matrix A.

Next, we append the equations that determine w! and w® in a PUNE with
endogenous parties. We shall assume that a party is represented by its average
type (wage). Let w*(L, R) be the type that is indifferent between policies L and
R (that type is unique in either of the two types of PUNE illustrated in Figures
13.1 and 13.2—to see this, check the graph of ¢ in Figure 9.2). Then we have:

(13.8b)  w* =w"(a;, by, ag, by),

W*

| wdF(w)
(13.8¢) wh=2
F(w*)

1

[ wdE(w)
(13.8d) wR="
1 — F(w*)
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Equation (13.8b) says that the pivotal type which separates the two parties must
be indifferent between the two policies (so that all types w < w* will prefer
policy L to policy R and all types w > w™* will prefer policy R to policy L), and
(13.8c and d) stipulate that each party is “represented” by its average member.

Equations (13.7 c—d) and (13.8 b—d) constitute five equations in the seven

L, wR. This determines (in general) a 2-manifold

unknowns a;, by, ag, by, w*, w
of solutions; when we find a candidate solution, we must check that inequalities
(13.8a) hold. The function w*(-) depends on the type of PUNE, as we shall see
below.

Our search strategy for PUNEs is now as follows. For PUNEs of the Figure

13.1 variety:

(1) Randomly choose a; and ay, to satisty 0 > a; > ag > u/(u, — 21);

(2) Solve equations (13.7 c—d) and (13.8 b—d) ;

(3) If inequalities (13.8a) hold, we have found a local PUNE of the Figure
13.1 variety.

In like manner, for PUNES of the Figure 13.2 variety, step 1 of the above
iteration procedure now becomes:

(1') Randomly choose a; and ay to satisfy 0 > ap > a;
>max[p/(pny — 21), agity /21 — 1/2].

The last inequality in this string guarantees both that g; lies on the segment
OU of AVOU and that b; < by, as Figure 13.2 requires.

To calibrate the model, I chose F to be the Beta distribution on [0, 1] with
mean 0.1545 and second moment (u,) 0.05277. This corresponds to the U.S.
income distribution in 1990 (see section 9.5). I chose 8 = 0.125: thus, at the
time of writing party manifestos, uncertainty about the vote is on the order of
+12.5%.

We next calculate the type w* that is indifferent between two policies. We
know, from the analysis of Chapter 9, that

—Ab

(13.9) oW = Aa

Equation (13.9) is a quadratic equation in w*, which has two roots. One of
these roots is the right one for PUNEs of the Figure 13.1 type and the other for
PUNE:s of the Figure 13.2 type. We shall skip the analysis of Figure 13.1 PUNEs,
for it turns out (by computation) there are no endogenous party equilibria of
this kind.
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For PUNE:s of the Figure 13.2 variety, we have, letting m = Ab/Aa and
solving (13.9),

—m + (m* + 4(mp + u,))"?
> )

(13.10) w*=

(We know this is the correct root of the quadratic, since m > 0 in this case,
and the other root would render w* a negative number.) The r.h.s. of (13.10)
is our function w*(ay, by, ag, bg). We are now ready to compute equilibria.
We proceed by choosing a; and a; randomly in the appropriate intervals, then
computing b; and by from equations (13.7c—d), then solving (13.8b-d) for w*,
wp, and wy, and finally checking the negativity conditions (13.8a).

I now discuss the details of the solution. The Beta distribution of income,
calibrated as explained above, has a density function

(1 _ W)wflwvfl

fw = B(v, w)

where B is the Beta function, v = 0.543855, and & = 2.97624.4

4. For details about the Beta distribution, see Evans, Hastings, and Peacock (1993).
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I ran the program for 300 iterations, and found 172 endogenous party
PUNEs. Figure 13.3 plots the projection of the Left and Right policies onto
the policy triangle T; they lie, of course, on the segments OU and TU of the
policy triangle. The average values of these PUNEs are

a, =—440, b, =.880, ap=—300, by=1.102,
w; = .055, wg =.352, w* =172, T =.913.

After-tax income at the average L policy and the average R policy are plotted
in Figure 13.4: the more progressive heavy line is after-tax income under L,
the less progressive dashed line is after-tax income under R, and the light line
is the diagonal (w, w). Figures 13.5a and b plot the marginal rate of taxation
as a function of income for the two policies: we see that Left taxes the highest
income at a marginal rate of 100%, while Right taxes the highest income at a
marginal rate of less than 50%. It is noteworthy that Left wins with an average
probability of over .90. Mr. w! is at the 39th centile of the wage distribution,

Post-tax
income
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Figure 13.4 Tax policies for Left and Right, at the average endogenous
party equilibrium
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Ms. wR is at the 86th centile, and Mr. w* is at the 67th centile: thus Left, in
endogenous party equilibrium, represents two-thirds of the polity. Since every
member of Left prefers its policy to Right, this means that Left gives more after-
tax income to the bottom 67% of the wage distribution, and Right gives more
after-tax income to the top 33% (this indeed checks, although it is difficult to
see in Figure 13.4).

Two other aspects of this equilibrium are noteworthy: (1) how differentiated
the average PUNE:s are at endogenous party equilibrium, and (2) the relative
“moderation” of the Left policy (recall that the most expropriationist policy,
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given by (a, b) = (0, 0), generates an after-tax income which is the constant
w=.1525).

In the United States, I think that the Democratic Party proposes redistribu-
tive policy much less radically redistributive than the Left tax policy in Figure
13.4; T do not know how the Republican Party’s policy relates to the R policy
in Figure 13.4. There may be many reasons that reality differs from this model.
Among those is the fact that American democracy is not perfectly representa-
tive, in the sense that the reformists and militants in the two parties do not have
the policy preferences (in terms of after-tax income) of the average type that
supports the respective parties. In reality it is probably the case that those who
finance parties have more than their per capita influence on the nature of the
parties’ preferences. We therefore briefly turn, in the next section, to the prob-
lem of party finance. And finally, there are issues other than after-tax income
that exercise the U.S. polity (and in that vein, recall the results of Chapter 11).

13.6 Private Financing of Parties

Perfectly representative democracy, in the sense of this chapter, is a utopian
ideal. In the United States (at least), the policy preferences of party donors
influence the preferences of the parties. In a model with party finance, the
default assumption should be that parties aggregate the preferences of their
donor types according to their contributions, not according to their population
frequency.

It is not conceptually difficult to introduce party finance into the model
of endogenous party formation. To solve the free-rider problem, it is best to
assume a finite-type polity—for example, the three-type polity of Chapter 12.
We assume that each type is organized by a corporate agent (a union or a
business council ) that assesses its members for contributions to the parties.
We shall write down a game played among types, where the strategies are
ordered pairs of contributions to the two parties. The preferences of parties
are determined at the Nash equilibrium of this game.

Let the policy space be T, let there be N types, let the von Neumann—
Morgenstern utility function of type h be v" (¢, x) = #"(t) — x, where ¥ repre-
sents type h’s policy preferences, t is a policy, and x is the total contributions of
the individual to the two parties. Let (zI', z}) be the contributions of a type-h
individual to the L and R parties, and represent by z the profile of such contri-
butions across types. (We assume these contributions, assessed by the “union,”
are the same for every individual in a given type.) The L party’s policy pref-
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erences are now defined to be v/ = 3", zI'#", with a similar formula for the R
party.’

With respect to these preferences, there is an average PUNE, which we denote
by (tX(z), t?(z)). Thus we have defined a mapping z — (t'(z), tR(z)) which
associates to any profile of party contributions an average PUNE. We may now
define the payoff function of type h as

M"(z) = 1 (@) (t1(2)) + (1 — 7 @)V (R (2)) — (2] + 2,

where 77 (z) is the average probability of L victory in the PUNE: at z.

We now define an equilibrium in the party formation process with private party
financing as a Nash equilibrium of this game among types, where each type is
constrained to contribute finance not to exceed its post-tax income.

In English, each type optimizes against the other types by choosing its party
finance contributions to maximize its utility, where it takes account of the effect
its contributions have on the preferences of the parties and hence on the PUNEs
which are forthcoming, and debits contributions as a disutility.

It would be a delicate task to compute this kind of equilibrium; if there were
three types, the strategy space would be six-dimensional. We would have to
compute derivatives of the payoff functions, which means having a precise
understanding of how changing the weights in the aggregation that defines
a party’s preferences influences the average PUNE. The payoft to such a com-
putation would probably not be worth the effort expenditure (at least with the
present author’s low-tech programming skills).

For a review of the recent literature on the influence of interest groups on
politics, the reader may consult Austen-Smith (1997).

13.7 A Technical Remark on the Existence of PUNEs

In the last several chapters we have seen a number of examples of PUNEs in
multidimensional models. The reader is entitled to ask: is there an interesting

5. Alternatively, some other aggregation rule can be chosen. Formally, one must ensure that
the kind of measurability and comparability possessed by the utility functions is respected by the
aggregation rule. See Roemer (1996, chap. 1).

This model does not explain how party finance is used by the party. In a more complex model,
we may introduce the party budget into the function 7: ceteris paribus, richer parties have a
higher probability of winning, as they spend more on informing voters about their candidate.
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general existence theorem for party-unanimity Nash equilibrium? I conjecture
there is not.

The problem is that we already have a very general existence theorem: there
is always a PUNE where each party plays the ideal policy of its militant faction.
Assuming these policies are unique, this is a PUNE, for the militants will
never agree to deviate from their respective ideal points. This is, however, an
uninteresting PUNE. Somewhat more interestingly, for fixed parties, let one
party play the ideal point of its militants. There will be a set of “best responses”
by the other party—policies which are Pareto efficient with respect to the
utilities of its three factions. Any of these, along with the first party’s policy,
constitute a PUNE. But these PUNESs are extreme in the sense that the militants
in the first party entirely dominate the party. What we really desire is a theorem
asserting the existence of a PUNE in which no faction is at its ideal point. But
that appears to be hard to come by.

Consider the following construction. Let T be the policy space with generic
element ¢. For any policy t* let CR(¢L) be the “contract curve” in T, consisting
of policies at which the militants and opportunists in Party R have no agreeable
deviation, given that Left is playing t*. Now take a typical point t € CX(t}), and
construct the contract curve Ct(t)—the points in T which are Pareto efficient
with respect to the militants and opportunists in Left, given that Right plays ¢.

Consider the union | J  CL(); define the correspondence
teCR(tl)

o= |J cwo,

teCR(tl)

which maps T, viewed as the policy space of Left, into itself. A fixed point of 6
is the left component of a PUNE.

Let 11" and tX* denote the ideal points of Left’s and Right’s militants. It is easy
to verify that t/" is a fixed point of #. (Just note that tX lies on CR(tL"), since
it lies on every contract curve for Right, and £ lies on CE(#R"), since it lies
on every contract curve of Left.) Thus we require an existence theorem which
tells us there is another fixed point. It is, however, not easy to show that 6 has
another fixed point.

It is probably very difficult to find interesting sufficient conditions for the
existence of (nontrivial) PUNEs. The reader should recall the difficult existence
proof for Wittman equilibrium in section 3.4, under not very satisfactory
assumptions. It seems the wiser strategy is either to prove the existence of
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PUNE: for each particular application, as we did in the models of Chapters 9
and 10, or to try to compute PUNEs, as we have often done in the past several
chapters.

13.8 Conclusion

We have proposed a theory of endogenous parties for a model with a two-
dimensional issue space. That theory, based on Baron (1993) and on collabo-
rative work with Ignacio Ortuno-Ortin (see section 5.2), conceives of parties
as being stable when no citizen wishes to change the party he belongs to when
he sees the policies both parties play in electoral competition. In the aggrega-
tion procedure which associates citizen types to party preferences, we made the
assumption of “perfect representation.”

Although our model deviates from political reality, because actual party
formation is not “perfectly representative,” the model is theoretically satisfying
because it derives political equilibrium from the usual primitives—preferences
and endowments of citizens. We note that the policies recommended by parties
in equilibrium are quite polarized—a far cry from Downsian convergence.

We know, in particular, that the United States is not a perfectly representative
democracy. We propose that the influence of campaign contributions on party
preferences is the key factor of which we have taken no account in electoral
politics. Another important factor may be that, in U.S. reality, many citizens do
not vote, and we cannot expect even perfectly representative parties to include
the preferences of these abstaining citizens in its calculus. Work remains to be
done to incorporate these phenomena into a model of endogenous parties.

We finally showed how a more realistic model of endogenous parties can
be constructed, which views parties as corporations whose preferences are
determined by the “One dollar one vote” rule. Computing equilibria of this
model is, however, beyond our scope here. Doubtless simplifications can be
proposed that would make the proposed analysis tractable.

13.9 Why the Poor Do Not Expropriate the Rich: Reprise

We have now seen a series of models addressing the issue of redistribution in
democracies. In the classic unidimensional Downs model under certainty, both
parties propose the ideal tax policy of the voter with median income, which
is unity, assuming that mean income is greater than median income. In the
unidimensional Wittman model with uncertainty of Proposition 4.1, the Left
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and Right parties propose tax rates of unity and zero, respectively. But in our
more nuanced analysis, Left parties do not propose to expropriate the rich,
even when we postulate no deadweight loss from taxation.

We can now see that this is due to the conjunction of three features of the
political economy of democracy:

(1) the multidimensionality of politics,
(2) the heterogeneity of preferences, and
(3) the complex nature of party competition.

The first feature includes the fact that political competition may concern
noneconomic issues as well as redistribution, as in Chapter 11, but also that,
even when competition is only about redistribution, tax policy may be com-
plex, as in the models of quadratic taxation in this chapter and Chapter 10.
In Chapter 11 we showed that the Left will propose low tax rates if the mean
income of the cohort of voters with the median value on the “religious” trait is
greater than the population’s mean income, even when the majority of voters
have an ideal tax rate of unity, and in section 13.5, we observed that, even when
redistribution is the only issue, the Left does not propose an expropriationary
policy. Nor does it do so in the three-class model of Chapter 12.

By the second feature in the list, I mean that voters have different incomes,
but also that they have different views on noneconomic issues, and by the third
feature, I mean that parties are composed of factions with different goals.

I do not believe it is useful to ask what the main explanation of nonexpropria-
tionary policy in democracies is. We have shown that that characteristic follows
from the conjunction of the three listed features, and because they all are fea-
tures of almost all democracies, that demonstration suffices. Moreover, it may
be a correct observation that the Nordic countries are ones where politics most
closely approximate unidimensionality, because of the linguistic, religious, and
ethnic homogeneity of the populations; if so, our theory suggests it is not a
surprise that these democracies have redistributed more pervasively than all
others.
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Toward a Model of Coalition Government

14.1 Introduction

A coalition government forms when there are more than two parties and none
of them wins an electoral majority. The underlying situation may be that
each party is allotted parliamentary seats in proportion to its vote, and that
a majority coalition is required to pass legislation.

The literature on coalition government, or multiparty politics, is reviewed
by Austen-Smith (1996) and Shepsle (1991). We shall not attempt to repeat
their work, but shall propose a model of multiparty politics which flows rather
naturally from the approach we have developed thus far. In the first part of
the chapter we restrict ourselves to the case of a unidimensional policy space,
and in the last part, to the multidimensional case. We shall throughout assume
that there are three parties. The logic for n parties is the same, although the
computations necessary to calculate equilibrium, for even four parties, become
fierce.

We shall assume, in the first part of the chapter, that parties are of the
Wittman variety, maximizing a preference order on policy space. We shall
also assume that parties are uncertain about voter behavior, and we adopt
the state-space approach to uncertainty. In the latter part of the chapter, when
doing multidimensional analysis, we take the view that parties are composed
of factions.

The natural way of thinking about party competition when there are more
than two parties is in a framework with dates (see Austen-Smith and Banks
1988). To wit, there are three dates at which relevant actions occur:

Date 0. Each party announces a policy;
Date 1. Citizens vote;
Date 2. A government forms, and announces its policy.

Clearly, for citizens to vote intelligently, they must understand the process
by which a government forms and a policy is announced, once the vote is in.

281
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In the two-party case, we assumed that each citizen votes for the party whose
policy he prefers; that behavior, however, is not necessarily rational when there
are more than two parties. In particular, if a voter predicts that her favorite
party will not be in the coalition, she might view a vote for it as wasted. Such
voters will be called strategic, while a citizen who always votes for the policy she
prefers is called sincere.

We shall continue to assume that there is a continuum of citizens, and so no
voter can ever be pivotal. Nevertheless, we shall endow voters with psychologies
according to which they may be either sincere or strategic in their voting
behavior. This is an attempt to capture real political behavior: in large polities
with multiparty politics we observe strategic voting by at least some citizens,
even though they know their votes are not pivotal.

Our game plan in this chapter will follow the instructions issued by Austen-
Smith and Banks (1988), who wrote:

Voters are interested in policy outcomes, not policy promises. And policy out-
comes are determined within an elected legislature that typically comprises
representatives of several districts or political parties. Rational voters, there-
fore, will take into account the subsequent legislative game in making their
decisions at the electoral stage of the process. In turn, rational candidates
will take account of such deliberations in selecting their electoral strategy and
subsequent legislative behavior conditional on electoral success. So to under-
stand more fully both electoral and legislative behavior—in the sense of being
able to explain and predict policy positions, policy outcomes, and coalition
structures—it is necessary to develop a theory of both political arenas simul-
taneously. (405)

14.2 The Payoff Function of a Wittman Party

We assume, as usual, a set of citizen types H, a set of policies T (with no
restriction, in this section, on its dimension), a utility function v(¢, h), a set
of states S, and a probability distribution G on S. In state s, the distribution of
voter types is given by a probability measure F.. Parties 1, 2, and 3 have policy
preferences represented by von Neumann—Morgenstern utility functions v/,
i =1, 2, 3. Parties agree on the distributions G and F..

14.2.1 COALITION FORMATION
We begin with the last stage of the game, namely, with a description of how a
government forms, and a policy is selected, once the vote has occurred. Denote
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the platform vector of the three parties by t = (¢, t2, £?), and let the distribution
of votesbe p = (p', p?, p*). There are two (nonsingular) possibilities: either one
party has a majority, or none does, but one party has a plurality.! In the first
case, the majority party takes power and implements its policy—this is just as
in the two-party case.

In the case that party j is the plural party, we assert that it takes the lead in
forminga coalition. The plural party will be called the formateur. It must choose
one partner to form a (majority) government. We prescribe the following rule.
If parties {7, j} compose the coalition, then the policy of the government will
be determined by a lottery over t' and ¢/, where the weights in the lottery are
proportional to the vote shares of i and j. Formally, define the function

i

G/(t,p) = ’+p7w( 7y 4+ +pjvl(t1)
(14.1)

ok
i Ik
p+p] (t)) + kﬂﬂv()

In writing the function G/, we adopt the convention that the coalition partners
are evaluated by j in ascending order of their index (thus, in (14.1), i < k). Then
party j chooses to coalesce with party i if G/ > 0 and chooses to coalesce with
party k if G/ < 0. G/(t, p) is just the difference in expected utilities for party j if
it coalesces with i or k. If G/ = 0, then we must adopt some tie-breaking rule:
we can say that j chooses each coalition partner with probability one-half, for
instance.

This defines completely the coalition formation process.? In the case we have
avoided, that two parties tie for the plurality, we may choose a formateur
between them by flipping a coin , and the process then proceeds as above. Our

1. A singular possibility is that two parties tie for the plurality. Of course, we should not prejudge
that this case is singular—but it turns out that it will be.

2. Austen-Smith (private communication) notes that it is unreasonable to assume that the
first potential coalition partner, B, approached accepts the offer. For B may compute that its
welfare is higher if a coalition is formed between A and C. Introducing such considerations would
complexify our analysis considerably, although a complete theory would require their recognition.
In sum, the present theory eclipses the important problem of party bargaining in the process of
coalition formation.
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approach in this chapter is to avoid such complicating details, however, for
pedagogical reasons.

The formation of a government policy as described is not, perhaps, the
first approach one thinks of. Why not just say that the government’s policy
is the convex combination of policies of the coalition partners, weighted by
the respective vote shares of those partners? Our choice is made, frankly, to
produce more credible equilibria. Suppose the coalition’s policy were, indeed,
the convex combination of the platforms of its members just alluded to. Then
each party might propose extreme policies (one very right, the other very left),
and their convex combination could be a reasonable, moderate policy. So that
formulation can lead to crazy equilibria where the platform vector is composed
of extreme policies—perhaps far to the left or right of any voter’s ideal point.
On the other hand, a lottery between very unattractive policies is still very
unattractive, so our formulation will not (obviously) lead to parties’ proposing
extreme policies.

We should notice that the process we have adopted may make it attractive
for a party that does not expect to be plural to decrease the fraction of the
vote it gets, by becoming more extreme, for it may, thereby, make itself a more
attractive coalition partner to the plural party. But recall that a party, in the
present model, is reformist and not opportunist—it does not desire to become
a coalition member per se, but only wishes to join the coalition if doing so
improves the policy lottery produced by the coalition government (from the
viewpoint of its preference order).

We may summarize as follows. Let L(t) be the set of lotteries on the policies
making up the platform vector ¢. Let P be the 2-simplex of possible distribu-
tions of the vote (3-vectors p whose non-negative components sum to one).
We have defined a function 6 : T x P — L(t), which associates any pair (¢, p)
to a lottery on t. We call 0 the coalition formation process.

It need hardly be said that we have here declared by fiat a coalition formation
process whose nature political scientists have studied in great historical detail
(see, for example, Baron and Ferejohn 1989; Strom 1990; and Laver and Shepsle
1996). Our aim in this chapter is to construct a plausible model. Real coalition
formation processes are doubtless far more complex than 6.

14.2.2 HOW CITIZENS VOTE
Each type h of citizen is further partitioned into two subtypes: those who vote
sincerely and those who vote strategically. To simplify things, we shall assume
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that, in each type, a fraction € are sincere and the fraction (1 — €) are strategic.
The number € is a datum of our model.

Each subtype of voter has a psychology. The psychology of sincere voters
is simple: they always derive maximum welfare, in the process of voting, from
voting their true preferences. The psychology of strategic voters is different. If
such a voter predicts that there will be a coalition government {7, j}, then he
derives a utility of 1 from voting for the party in {i, j} that he prefers, a utility
of —1 from voting for the party in {i, j} that he disprefers, and a utility of 0 from
voting for party k. We might summarize this by saying that he thinks of his vote
as productive, detrimental, and wasted, respectively, in these three cases. It is
best for one’s vote to be productive, and worst for it to be detrimental. If, on the
other hand, he predicts that party i will be the majority party, and that party j
will come in second, then he derives a utility of 1 from voting for his preferred
party in {i, j}, a utility of —1 from voting for his dispreferred party in {3, j},
and a utility 0 from voting for party k. We further suppose that these utilities,
defined when he knows for sure what the electoral outcome will be, obey the
von Neumann—Morgenstern axioms over lotteries on electoral outcomes.

To illustrate, suppose a voter believes that with probability 7 there will be
a coalition {i, j}, with probability 1 — 7 party i will win with a majority, and
the voter’s preferences are t/ > t* > t'. Then the voter computes her expected
utility from voting for i, j, or k as follows:

Eu(voting i) =7 (—1) + (1 — m)(—1)
Eu(voting j) =7 (1) + (1 — 7)(1)

Eu(voting k) = 7 (0) + (1 — 7)(0) = 0.

The voter clearly maximizes utility by voting for j.

We next define the concept of a consistent vote at platform vector t in state s.
Verbally, a consistent vote in state s is a distribution of the vote, p, at platform
vector f, such that, when every voter computes the lottery induced by the
coalition formation process at (¢, p), and calculates, according to that belief,
how he should vote, the vote (in state s) aggregates exactly to p. Thus p is a
stationary point in the voting process at ¢ in state s.

To write this down precisely, let ¢ be given, let H' be the set of voter types
who prefer ¢ to the other two policies, and let H be the subset of H' of types
who prefer t/ to t*. (In our quest for simplicity, we ignore cases of indifference. )
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We now describe how voters react if they believe the vote distribution will be
p = (p', p*, p*) and the platform vector is t.

There are several cases.

Case (1) Party 2 is plural, and G*(t, p) > 0.

We imagine, now, that all citizens take p to be their belief about the vote
distribution. Thus the coalition formed, were p the actual vote, would be {2, 1}.
Then, according to our specification of voter psychology, the fraction who will
vote for party 2, in state s, is

(142a) q*=F (H? + (1 — €)F,(H*.

Thus all those who prefer ¢ vote for party 2, as do the strategic voters whose
preferences are > > t* > t!.
In like manner, the fraction who would vote for Party 1 is

(142b) q'=F (H") + (1 — €)F,(H"),

while the fraction voting for party 3 is simply the sincere voters who prefer t°,
that is,

(14.2¢) q3 = eFS(HS).

Clearly other cases where one party is plural are handled in the same way.
Case (2) p'> 0.5,and p* > p?.
In this case, the reader can verify that the vote fractions in state s will be:

q' =F,(H") + (1 — e)F,(H™),
q2 = eFS(HZ), and
¢ =F.(H) + (1 — €)F,(H?).

We will not write down voter behavior in singular cases where there are ties,
although the logic permits us to do so.
Clearly other cases where one party is major are handled in the same way.
We have defined a mapping W, : P — P. At any pair (¢,s) € T x S, it as-
sociates a belief about the vote distribution (p) to an action by voters which
aggregates to a vote distribution, W,(p). We now define a vote distribution p

to be consistent (at platform vector t in state s) if it is a fixed point of W,;, and
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if, at p, the coalition formateur behaves as postulated. For instance, a vector p
such that

p' =F(H") + (1 — e)F(H),
P =F,H* + (1 — e)F(H?), and
p’ = €eF(H),

and at p, 2 is the plural party and G*(t, p) > 0 is a consistent vote.

Unfortunately, consistent vote distributions at (¢, s) are neither, in general,
unique, nor do they always exist. (We shall give some examples below.) For the
moment, let us assume that for every (t,s) € T x S, there is a unique consistent
vote distribution.

14.2.3 PARTY BEHAVIOR

We are now in a position to define the payoff functions of the parties, functions
I':T x T x T — R.Foranyt € T°,and in any state s, there is (by assumption)
a unique consistent vote, call it p(¢, s). At the pair (¢, p(¢, 5)), there is a lottery
on t induced by the coalition formation process, 0 (¢, p(t, s)). The expected
utility of party i at this lottery is v(6 (¢, p(t, 5))). But now party i has to take its
expectation over the set of possible states, and so its payoff is

(143) II'(t) = /v"(@(t,p(t, $))AG(s).

N

Each party desires to maximize its payoff, and we define a Wittman equilib-
rium for the three-party game as a Nash equilibrium (in pure strategies) of the
three-player game with payoff functions IT'.

Wittman equilibria will often exist when the party space is unidimensional.
We provide an example in section 14.3.

As we see, the subtlety in the three-party model is to define the payoff
functions of the parties. Some remarks are in order.

Remark 1 On finding a consistent vote distribution at platform vector t in
state s.

This is a simple process, in the sense that a finite algorithm will do the job of
finding all fixed points. There are a finite number of possible cases, given t and
F; either party 1 is plural, or party 2 is plural, and so on. In each case, we can
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deduce what the fixed point must be, if there is one, according to the formulae
provided in, for instance, equations (14.2a,b,c).

There are, as I noted, two possible problems: either nonexistence or non-
uniqueness.

Remark 2 On handling nonuniqueness of a consistent vote at (z, s).

One way to do this is to suppose that parties assume each consistent vote
distribution is equally likely. I prefer, however, to introduce a polling process.

Assume that there is a series of opinion polls after the parties announce their
policies. Before the first poll (but after the party announcements), the state, s,
is revealed. In the first poll, everyone polled announces sincerely which policy
he prefers: this gives a vote distribution g' (¢, s). When this poll is published, it
becomes the current belief of voters, who then compute how they should vote
given that belief; in the second poll, voters announce their votes, which will give
a vote distribution W, .(q'(t, s)) = g*(¢, 5). In the third poll, voters have taken
qz to be their beliefs and announce, accordingly, their intentions to vote, which
aggregate to W,(¢°(t, s)) = ¢°(t, s). It is not hard to deduce that if a consistent
vote exists, it will be arrived at by at most the third poll: that is, either ¢° is a
consistent vote, or there will be an unending cycle in this process.

Note that this procedure will always locate a particular consistent vote dis-
tribution, if there are several, for it is anchored by the initial condition that
voters announce sincerely on the first poll. This, then, is a way of solving the
nonuniqueness problem.

Moreover, I conjecture that the polling process just described reflects the
role that polls play in politics. Fresh after the party conventions, when polled,
citizens announce sincerely, and after that, if they are strategic, they react
(myopically, we would say) to the previous poll. Thus the polling process serves
an important function of locating a consistent vote distribution.? (The reason
that polls may not converge in real life could either be that no consistent vote
distribution exists or, more likely, that many voters are oscillating in their view
about which party they prefer. That kind of oscillation is not modeled here.)

Remark3 On handling nonexistence of a consistent vote distribution at (t, s).

3. Voters think one step ahead, but not two steps ahead. Perhaps this is the simplest way of
capturing bounded rationality.
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One could take lotteries over the various vote distributions that could be
fixed points, in the sense that they are implied by equations like (14.2a,b,c),
associated with the various cases, but I prefer a simpler alternative. First, note
that we are only concerned with platform vectors that lack a consistent vote
distribution for a set of states of positive G-measure—bad behavior on sets
of states of zero measure will not affect the definition of the payoff function.
But in that case, I would simply say the payoff functions are not defined at
t. (Alternatively, we assign a payoff of —oo to all parties in the case where
consistent vote distributions fail to exist for a set of states of positive measure.)
Thus no party will ever deviate to a policy that renders the platform vector one
of this kind.

A simple example suggests that the nonexistence of consistent vote distribu-
tions is not a major problem, as follows. T is the real line, H = {h!, h?, h%},
where k' are real numbers, each type i’ has Euclidean preferences with ideal
point 4, and there are three parties, one representing each type. We take
€ =.9, and assume that there is only one state, and F is the discrete distri-
bution (.32, .4, .28). Let (h', k%, h*) = (10, 20, 50). We study the question: how
often, on T?3, is there no consistent vote distribution? To answer this question,
we generated randomly vectors (t', t2, t*) € [—100, 15] x [15, 35] x [35, 200].
The example is constructed so that party 2 will always be plural. With 10,000
randomizations, we found 260 cases with no consistent vote—thus, in about
2.6% of the cases. (In these cases, the vote oscillates between what would occur
if voters expected the coalition to be {2, 1} and what would occur were they
to expect the coalition to be {2, 3}. Thus when they expect the coalition to be
{2, 1}, a vote is induced which makes it attractive for party 2 to coalesce with
party 3, and so on.)

Remark 4 On postulating both sincere and strategic voters.

There are two reasons to do so. First, both types of voter surely exist in
reality. Second, if we had only strategic voters in our model, endowed with
the psychology described above, then every consistent vote will give one party
the majority, and hence there will be no coalition governments. For suppose
voters expect the coalition to be {2, 1}. Then all strategic voters will vote either
for party 2 or for party 1, so one of these parties wins the majority (barring
ties), and hence a consistent expectation can only be that there is a majority
winner. Even if ties become important, and so there is a coalition between two
parties each of which receives half the vote, it is uninteresting to have equilibria
in which the outside party receives zero votes.
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Hence, unless we alter the psychology that leads to strategic voting, the
simplest way to give some hope for the existence of equilibria with coalition
governments is to include sincere voters.

14.3 An Example of Coalition Government:
Unidimensional Wittman Equilibrium

We study an example where there is a continuum of types, but only two states.
Thuswelet S = {1, 2}, G assigns probability one-half to each state, H = [0, 00),
T = [0, 00), v(t, h) = —(t — h)?, F, is the lognormal distribution on H with
mean 40 and median 30, and F, is the lognormal distribution on H with mean
40 and median 20. We shall specify the parties and € below: for the moment,
represent the preferences of party i by v'. Note that the policy space is the
positive real line.

Thus think of this model as one of U.S. politics, where ki is the annual income
of a citizen in thousands of dollars, and ¢ is an economic policy. We identify
t = h as the optimal economic policy for a citizen with income h. F, is an
approximation to the actual distribution of household income in the United
States (in thousands of dollars) in the early 1990s, and F, is a more skewed
distribution with the same mean.

The parties shall be thought of as Left (1), Center (2), and Right (3); we shall
calibrate the model further (which means choosing the parties’ preferences and
€) so as to generate two kinds of equilibria: one where there is a coalition
government, in both states, at equilibrium with Center as formateur, and
another where in one state there is a coalition government, and in the other,
Center wins a majority.

Suppose the parties propose policies ' < > < > (which is what we should
expect, given their names). Then, in state s, all those types with h < (¢! + t2)/2
prefer t! to the other two policies. More generally, the fraction of the polity that
prefers ¢’ to the other two policies in state s, which we denote p, (t), is given by:

th+ 12
—=F R
pls(t) s ( 2 )

3 2
PSs(t):l_Fs<t —;t )’

t3 + t2 tl + t2
=F —F .
p25(t) s ( 2 ) s < 2 )
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What must a consistent vote distribution look like in state 1 if it is to be the
case that party 2 is the plural party and prefers to coalesce with party 12 If
voters believe that to be the case, then the distribution of the vote in state 1
will be

g1 = (P11(0); Py () + (1 — €)p3,(£), €p3, (1)).

Thus because preferences are single-peaked, all strategic voters whose preferred
policy is > will cast their vote for party 2. The distribution g, is indeed a
consistent vote distribution if, at g, party 2 is plural and prefers to coalesce
with party 1, that is, the second component of g, is the largest component
and is less than one-half, and G*(t, q,) > 0. In this case, the policy lottery that
emerges from the coalition formation process is

<P21 + (1 —€)ps, ot Pu o t1> ’
1 —e€psy 1 —epy

where the notation (x o t, y o r) means the lottery that gives ¢ with probability
x and r with probability y.

What are the necessary and sufficient conditions for g, to be a consistent vote
distribution at ¢ in state 2 when party 2 is plural and prefers to coalesce with
party 32 In that case, the vote distribution must be

gy = (€p15(1), P (£) + (1 — €)py,(2), p3,(1)),

and it must be the case that G*(¢, ¢,) < 0. In this case, the coalition’s policy is
the lottery:

>

(Pzz + (1 —€)py, o0 D32 o t3> ‘

1 —€pyp 1 —€pyp,
Defining
P11 (9) P (1)
W)= —, Wy(t) = ———,
! 1 — eps, (1) 2 1 —epy,(t)
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using equation (14.3) and knowledge of what the policy lotteries are in the two
cases, we can write the payoff functions of the parties in this situation as:

i = (1= POEO) iy WO,y
(14.4)
+ Wz_(t)vi(t3), fori=1,2,3.

2

We now can use the calculus. The local condition for a platform vector ¢
to induce the coalition governments in the two states as described above in
Nash equilibrium is that for each i, t' maximize IT’ locally, given the other two
policies, that G*(t, g,(t)) > 0 and G*(t, q,(¢)) > 0, and that party 2 indeed
be the plural party at g' and ¢*. Thus we can solve the model by setting the
three appropriate first derivatives of the payoff functions equal to zero and
then checking that the ancillary conditions hold at the solution.

Note that, mathematically, (14.4) is just like the Wittman payoff function
in the two-party model, where we now have a positive convex combination of
the party’s utility at three policies. In particular, the weights in (14.4) are the
probabilities that voters (and parties) will, in the end, see the three respective
policies implemented.

I further calibrated the model by taking the Left party to represent the voter
type 10 (thus v!(t) = —(t — 10)?), the Center party to represent the type 25,
and I then searched for values for the type h* whom the Right party represents
in order to generate equilibria of the kind described—that in both states Center
is plural, and that in state 1 it coalesces with Left and in state 2 it coalesces with
Right. The results for € = .9 are reported in Table 14.1. The table shows that
there is only a small range of values h” for which equilibria* of this kind occur—
roughly, between 40 and 44. In all cases, Left proposes a policy of 0, to the left
of its ideal point, Center proposes policies slightly to left of its ideal point, and
Right proposes policies that are sometimes to the left and sometimes to the
right of its ideal point. In the table, “Exp(s]” is the expected value of the policy
in state s, and G? denotes the value of G? in state s.

4. To be sure we have genuine Nash equilibria, we must check that, globally, there are no
attractive deviations for any party. The policies described below are each global maxima of their
respective conditional payoff functions, but we must check more than that: for instance, would
it be profitable for the right to deviate to a point at which it would become a plurality winner?
There are only a finite number of possibilities, but the exercise is tedious.
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It will be instructive to examine more closely why the allocations in Table
14.1 are equilibria. Let us fix attention on the case h#* = 40. Why should not
Left deviate above zero? After all, that might make it an even more attractive
coalition partner for Center, and it would increase its vote share. The answer
is tricky. If Left deviates a small amount to the right, its vote share increases,
Center’s vote share decreases, and Right’s vote share stays the same. It remains
the case that the structure of coalitions is the same in the two states, but now,
in the coalition {2, 3}, Right’s policy has a higher probability of winning than
before, because Right’s relative share of the vote in the Center-Right coalition
has increased. This decreases Left’s expected utility in state 2, and it turns out
that this utility decrement dominates the utility increment that Left enjoys (in
state 1) by moving toward its ideal point.

But perhaps Left should deviate a lot to, say, t! = 19. After all, Left prefers
19 to 0 (since its ideal point is 10). Then Left might be so attractive to Center
that Center will coalesce with Left in both states. We now check this. At the
policy platform (19, 21.462, 40.256), if all voters behaved sincerely, the vote
distribution would be (.302, .213, .485) in state 1. It looks as if Right will now
be the formateur: we indeed check that the vote shares (.302¢, .302(1 — €) +
.213, .485) are consistent at this platform vector in state 1 with Right’s being the
plural party who chooses to coalesce with Center! Thus in this state we must
compute Left’s utility as its expected utility from the Right-Center lottery so
determined.

In state 2, if all voters voted sincerely at the new platform vector, the vote
distribution would be (.504, .140, .356)—Left is the majority winner. Con-
sequently this is a consistent vote distribution in state 1 with Left’s being the
majority winner.

Table 14.1 Three-party equilibria, coalition governments

{e = 0.9, (W, K = (10, 25)}

h3

t ©  pu Pn Pu Pz Pn Pn Exp(l] Exp[2] G} G;

40

41

42

43

44

0 21.462
0 21.488
0 21.512
0 21.534

0 21.554

40.256
41.039
41.881
42.57

43.318

.088
.088
.088
.088
.089

476
482
487
493
498

437
43

425
419

413

.269
.269
.269
27
27

375
379
.383
.386
.39

.356
352
.348
344
341

18.122
18.171
18.217
18.261

18.302

30.618
30.907
31.185
31.451

31.707

5.05
10.514
16.016
21.546

27.093

74.157
68.183
62.147
56.06

49.933




294 14 | A Model of Coalition Government

We now compute Left’s expected utility over these two states (when Left has
deviated to 19), which turns out to be —183.6. However, at the allocation in
the first line of Table 14.1, Left’s expected utility is —159.96. So the deviation
to 19 is not attractive to Left.

This illustrates the complex strategic nature of party behavior in the model.

An interesting feature of these equilibria is the relationship between the
degree of skewness in the income distribution and the expected policy. Recall
that state 2 is the one where the income distribution is more skewed—a lower
median income, with the same mean income as in state 1. The expected value of
the policy in state 2, however, is considerably more right than the expected value
of the policy in state 1. Thus increasing skewness of the income distribution
is associated with policies which are less redistributive, which is exactly the
opposite conclusion to what is argued in a prominent strand in the current
literature (see, for example, Persson and Tabellini 1994). Of course, the political
models of that literature are all Downsian, unidimensional models, and so
we should not be surprised that their conclusions are not robust when more
complex political mechanisms are introduced.> The phenomenon is easily
understood by studying the table. In state 1, Left gets very few votes—only 8.8%
of the polity—because the polity is relatively well-off, but in state 2, Left gets
26.9% of the votes. Therefore, Left is an attractive coalition partner for Center
in state 1, since although it has a radical policy, there is only a small chance
it will win the lottery in the coalition government, while in state 2, there is a
significant chance that Left would win the policy lottery—so Center prefers to
coalesce with Right.

We see from this example that these equilibria possess nonintuitive
properties—whether they conform to empirical observation is another ques-
tion. The main observations seem to be, first, that unlike Wittman equilibrium
in the two-party case, here the extreme parties may propose policies more ex-
treme than their ideal points in equilibrium, and second, that “politics make
strange bedfellows” in the sense of the “pathology” just described with regard
to Center’s choice of coalition partner. Moreover, strategic behavior is com-
plex, in the sense that a party must consider how its policy deviation will affect
the relative strengths of the coalition partners in states where it is not in the
coalition. Whether actual parties are this strategic is an open question.

5. In fact, we showed that the Persson-Tabellini result was not robust when two-party Wittman
politics were introduced, in section 5.2, as well.
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We proceed to study a second case, in which we generate equilibria where, in
state 1, Center is the majority winner, and in state 2, Center is the formateur
who chooses to coalesce with Right. For this case, the payoff functions become:

() = 1) + 11 = W))W (1) + WLV (£).

(In state 1, the lottery is degenerate: the policy is ¢* for sure.) We solve the
three first-order conditions, and in addition, we check that Center receives a
majority in state 1, that it receives a plurality in state 2, and that in the second
state, G < 0.

Here I searched for solutions where h' = 20 and h?* = 30—thus parties 1 and
2 each represent the median voter in one state of the world. Table 14.2 reports
results for € = 1, and Table 14.3 for € = .7.

When all voters are sincere (Table 14.2), the asserted kinds of government
form for h? in the range 52 to 59. We note that Left always proposes a policy
much more extreme than its ideal, Center policy is less than its ideal, and Right’s
is just slightly less than its ideal. Again a first glance at a typical row of Table 14.2
suggests that Left could profitably deviate to somewhere near its ideal point—
but that turns out not to be the case. As in the last example, a deviation by Left
to 20, say, so lowers the vote Center receives that it renders Right the formateur

Table 14.2 Three-party equilibria, coalition and majority governments

{e = 1.0, (W', H?) = (20, 30)}

Wt t? £ pu P Pn P P Pxn  Exp[l]  Exp[2]
52 0 24.718 51.632 .121 .503 .375 341 367 .291 24.718  36.629
53 0 24.729 5233 121 508 371 341 .37 289 24.729  36.834
54 0 24.739 53.018 .121 512 366 342 372 286 24.739 37.031
55 0 24747 53.695 .121 517 362 342 375 284 24747 37.22

56 0 24.753 54363 .122 521 .358 342 377 281 24.753  37.403
57 0 24.758 55.021 .122 525 .354 342 379 279 24.758 37.579
58 0 24.762 55.669 .122 529 .35 342 382 276 24.762  37.748
59 0 24765 56.309 .122 533 346 342 384 274 24.765 3791
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Table 14.3 Three-party equilibria, coalition and majority governments
{e =0.7, (h', h?) = (20, 30)}

weood! t? £ Pn P2 P31 P Pn Py Expll]  Exp[2]
52 0 25.842 50.465 .133 604 263 249 46 292 25.842 35.401
53 0 25.868 51.195 .134 .607 .26 249 462 289 25.868  35.606
54 0 25.893 51916 .134 .61 256 249 465 286  25.893  35.805
55 0 25916 52.627 .134 .613 253 249 467 283 25916  35.997
56 0 25939 53328 .134 .616 .25 .25 A7 281 25.939 36.182
57 0 25961 54.02 135 619 247 .25 472 278 25961  36.361
58 0 25982 54.704 .135 .621 244 .25 474 276 25982  36.535
59 0 26.001 55378 .135 .624 241 .25 477 273 26.001  36.703

in state 1. Although Left becomes the majority winner in state 2, the trade-off
turns out to be deleterious to Left.

By examining Table 14.3, which has the same environment as Table 14.2
except that now € = .7, we see the effect that introducing strategic voters has.
Strategic voters appear to cause the policies to converge to some extent.

14.4 Multidimensional Three-Party Politics

As in the two-party game, we cannot depend upon the existence of Wittman
equilibria when the policy space is multidimensional. We can, however, define
equilibrium with party factions in the three-party problem, just as we did
in the two-party problem. As we will indicate, these equilibria will typically
exist, although computing them is generally difficult because of the difficulty
in computing the Wittman payoff functions, which now become the payoff
functions of the reformists.

The stochastic environment is as in section 14.2. There is a set of voter types
H, a set of states s, distributed according to G, where the distribution of voter
types in state s is F..

We assume a multidimensional policy space, T, three parties, where the
militants of party i have a (von Neumann—Morgenstern) utility function v/ on
T, and the reformists of party i have utility function IT* on T?, given by (14.3).
We face a decision on how to conceptualize opportunists. Do opportunists wish
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to maximize the probability of being in the government (meaning being either
amajority winner or a coalition member) or the probability of being a majority
or plurality winner—that is, of being a formateur? Presumably, opportunists
in “large” parties wish to maximize the probability of being in the majority or
plurality, while opportunists in small parties wish to maximize the probability
of being in the coalition government. Let us simply define 7' : T> — [0, 1] as
the particular probability that the opportunists in party i are maximizing. (We
could, of course, complexify further, by postulating that there are two kinds of
opportunist in each party.)

For any policy triple t = (¢, t2, t*) we can compute (modulo the problems of
nonexistence and multiplicity of consistent votes already discussed) the set of
states S'(t) in which party i is the majority winner and the set of states S(t) in
which party i is the formateur of the coalition government {3, j}. It is now clear
how to define the functions 7. For instance, suppose that the opportunists in
party i wish to maximize the probability that their party is either a majority or
a plurality winner. Then we define

(145)  7'(t) = G(S'(t) U ST (1) U S*(1)).

We have now defined the utility functions of all the factions in a party. We
define a party-unanimity Nash equilibrium (PUNE) as a triple of policies such
that, given the policies of any two parties, the factions of the third party cannot
all agree to deviate to an alternative policy for their party.

If the set of states is a continuum and G possesses a density, then the oppor-
tunists’ utility functions will be almost everywhere differentiable, and we can
then write the analytical conditions for a local PUNE using Farkas’ lemma. If
there are no binding constraints on policies at equilibrium then those condi-
tions may be written

— Vit = x, VT (1) + y,V, 7 (1),
(14.6)  — Vv (D) = x,V,IT%(t) + ,V, (1),
— V(1) = %, VI (1) + y3 Vo (8).

Any solution of these equations where the x; and y; are non-negative is (at
least locally) a PUNE. If the dimension of the policy space is n, then (14.6)
constitutes 3n equations in 3n + 6 unknowns, so that there will generically
exist either no solution or a 6-manifold of solutions. The smallest value for n
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is two, in which case the set of PUNEs will be a set of full measure in the cross-
product T3 for any larger value of 1, the set of PUNEs will be a set of measure
zero in T°. If there are binding constraints on policies, these comments do
not change: each binding constraint adds one more Lagrangian multiplier and
one more equation, thus not changing the dimensionality of the equilibrium
manifold.

Actually solving for equilibria, from equations (14.6), is harder than solving
for PUNEs in the two-party case, where typically the equilibrium manifold is
of dimension two. Consider, for example, a problem where dim T = 3. One can
solve six of the nine equations making up (14.6) for the Lagrange multipliers—
this is easy, as the equations are linear in the multipliers. We are left with
three equations and the nine policy variables. One must specify six variables
at random, solve the three equations in three unknowns that remain, and then
check that the multipliers are all non-negative at the solution. It will in general
be much harder to locate (by random choice) a 6-vector that will lead to a
solution than it is, to locate by random choice, a 2-vector (in the two-party
case) that leads to a solution.

The reader can deduce, at this point, that if ¢ is the number of coalitions
in each party and if p is the number of parties, then the dimension of the
equilibrium manifold will generally be (¢ — 1)p. In the two-party case we were
lucky in being able to eliminate the reformists, and so, from the mathematical
viewpoint, ¢ was equal only to two, and hence (¢ — 1)p = 2. In proceeding
with applications in the three-party case, I would probably eliminate one of
the factions—say the reformists—which would reduce the dimension of the
equilibrium manifold to three.

The remarks of the last several paragraphs apply to solving equations (14.6).
But that must be preceded by writing down equations (14.6), which is to say,
calculating the derivatives of the various utility functions. These functions
are difficult to write down, even for “simple” examples. Thus, although our
experience with the two-party case can lead us confidently to predict that
the concept of PUNE with three parties is not vacuous, it would be wise to
introduce further simplifications in the model in order to render the concept
tractable.

The formulation of Baron and Diermeier (forthcoming) may be one to
incorporate here. They propose that the vote proportions the parties receive in
the election determine the probabilities that the respective parties are chosen
to form a government: but the policy of a coalition government is always
determined by an equal-probability lottery of the policies of its members. With
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this rule, the payoff functions of both the reformists and the opportunists
become much simpler than in our formulation.

14.5 Coalition Government with a Multidimensional Issue Space:
An Example

For the example that we shall construct, we indeed shall adopt the Baron-
Diermeier (forthcoming) formulation. To be specific, we shall assume that
if a party wins a majority, then it implements its platform; if no party wins
a majority, then there is a lottery that determines which party shall be the
formateur, where party i is chosen with probability equal to the vote share that
party i received in the election. If party i chooses party j as its partner, then
the policy of the government is determined by a lottery in which ¢’ and t/ each
receive probability one-half.

Given these rules, the coalition formation process follows the same logic as in
section 14.3. The formateur chooses that partner that maximizes its expected
utility.

A further simplification is possible once we have adopted the Baron-
Diermeier coalition formation process. Because a stochastic element has al-
ready been introduced in that process, we do not need to introduce one else-
where in our model. Therefore, we will assume that there is a fixed probability
distribution of types, F. That is, we can dispense with our set of states.

We shall now compute PUNEs for a modified version of the three-class
model studied in Chapter 12. To wit, we now assume that there are two basic
types in the polity, capitalists and worker-shopkeepers. Capitalists own equal
shares in a firm which produces a single output from two inputs, labor (L) and
infrastructure (G), according to the production function

¢(G, L) =BGV L’

The fraction of capitalists in the polity is denoted c. Among worker-
shopkeepers, there is a continuum of subtypes. A typical subtype, called A,
is capable of producing the good in her shop at a rate of « units per year, but
she can only do this for fraction A of the year; for the fraction of time 1 — A, she
must sell her labor to the capitalist firm. We may interpret this by supposing
that there is some capital stock necessary to run the shop, and these individ-
uals possess different amounts of it. Let F be a probability distribution on the
interval [0, 1]; we suppose that the fraction of worker-shopkeepers whose trait
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A lies in a (measurable) subset D of [0, 1] is F(D). The mean of F is denoted 9,
and we define

p=00-¢) and w=01-0)(1—oc).

Assuming that each member of the population works full time for the work
year, then p is the fraction of labor-days expended in small shops and w is the
fraction of labor days expended by workers in factories, while ¢ is the fraction
of labor-days expended by capitalists (counting their profits and monitoring
workers). Note, by definition, we have ¢ + w + p = 1. It follows that the mass
of worker-shopkeepers is w + p.

As in Chapter 12, labor is inelastically supplied. If it turns out to be the case
that o is larger than the yearly wage income from factory work, then all worker-
shopkeepers will work as much time as they can in their shops (that is, 1)
and will work in the factory the remaining portion of the year. Thus the labor
supply, per capita, to the factory will be exactly w, and the total output of shops
will be par. The reader will now recognize that we have set up the environment
so that the economy, from a macro viewpoint, looks exactly like the one in
Chapter 12.

We now assume that there are three parties: one representing capitalists
(C), one representing the proletarianized worker (W)—that is, the worker-
shopkeeper whose A equals zero—and the third representing the pure petit
bourgeois (PB)—the worker-shopkeeper whose X is one. The policy vector is
(a, G, T), as in Chapter 12, the budget constraint continues to be given by
equation (12.1), and the utility functions of the three parties continue to be
given by (12.2). Because we eliminate T via (12.1), we denote the policy of
party J by @, a).

We now suppose that there are two factions in each party, militants and op-
portunists. The militants’ utility functions are given by (12.2). We suppose that
the opportunists in the PB and W parties each wish to maximize the probabil-
ity of being either in the majority or the formateur, while the opportunists in
C wish to maximize the probability of being in the coalition government. Re-
call, from the discussion of the last section, that this is a substantive modeling
decision, since in the three-party context, ignoring the reformists will alter the
set of equilibria. We nevertheless do so in the interests of simplicity.

We proceed to calculate PUNEs with the following property: if either W or PB
is chosen to be formateur, it chooses C as partner; if C is chosen to be formateur
it chooses W as partner. If this is indeed the case at a PUNE, then party C will be
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in the coalition with probability one. Hence the opportunists in C are at their
ideal point. If each of W and PB would indeed choose C as its coalition partner
if C varied its policy in a small neighborhood, then (a%, G°) must be the ideal
point of C’s militants—for otherwise C’s militants could increase their utility
by moving toward the ideal point, while leaving C’s opportunists completely
satisfied (with a unit probability of being in the coalition). Thus we shall search
for PUNEs where (a®, G©) is the ideal point of C’s militants. Denote this policy
by (a*, G¥).

The after-tax income of a worker-shopkeeper of type A, at the policy (a, G),
which is just her utility at that policy, is

(14.7)  v(a, G A) =B, G) + A = vV (a, G).

We therefore compute that the set of worker-shopkeepers who prefer a policy
(a, G) to a policy (a', G') is the set of A such that:

M1 = a)(6pG70" ™ —a) — (1 = a) (3G — )
(14.8)
<(1 - a)8G"* ! — (1 — a)8pG"w* ™ + AT,

where Aa=a—d and AT=T - T

If we denote by (a, G) the policy of the W party and by (a’, G’) the policy of
the PB party, and we conjecture that the term in curly brackets on the Lh.s. of
(14.8) is positive at equilibrium, then we may write (14.8) as

1 bl G’ ,) G/
(49 1< 22686
¢*(a, G, a, G
where ¢%(a, G, a’, G') is the expression in curly brackets on the Lh.s. of (14.8),
and ¢!(a, G, a’, G') is the r.h.s. of (14.8). Thus the set of worker-shopkeepers
who prefer W’s policy (a, G) to PB’s policy (', G’) has mass

1 el
F [—¢ (“’G’”’G)] @+ p).
$?(a, G, a', @)

We now discuss strategic voting. If indeed we are at an equilibrium of the
type described—that formateur W chooses to coalesce with C and formateur
PB chooses to coalesce with C—then C is guaranteed to be in the coalition.
Hence, a strategic voter who prefers C’s policy to the other two policies should
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vote for either W or PB, depending on whether he prefers the {W, C} lottery
or the {PB, C} lottery. (Recall that, in any case, C’s policy wins the lottery in
the coalition government with probability one-half, so there is no point voting
for C.) However, a strategic voter who prefers W’s policy should vote for W,
as that increases the probability that W is formateur, and a strategic voter who
prefers PB’s policy should likewise vote for PB. Hence the only strategic voters
who do not vote sincerely at this kind of equilibrium are those whose favorite
policy is C’s. Let € be the fraction of capitalists who are sincere voters.

Now suppose it is the case (as it will be!) that every capitalist prefers W’s
policy to PB’s policy. If every worker-shopkeeper of type X satisfying (14.9)
prefers W’s policy to (a*, G*), then these constitute exactly the fraction of
the noncapitalist vote that party W receives. Since (1 — €) is the fraction of
capitalists that vote for W, the fraction of the vote that W receives, and hence
the probability that W will be the formateur is:

¢'(a,G,a,G)

14.10 W(a, G, d,G, a*G)=F
410y w7{@ G0, Gt &) [¢2(a,G,a’,G/>

}(w+p)+(l—6)c,

as long as the r.h.s. of (14.10) is less than one-half. Equation (14.10) embodies
the Baron-Diermeier assumption, that a party is chosen as formateur with
probability equal to its fraction of the vote. It follows that

(14.11) #B=1—ec—7=",

as long as the r.h.s. of (14.11) is less than one-half, for according to our as-
sumptions, the only agents who will be voting for party C are the capitalists.

Recall the constraints given by the functions k!, h?, and h® of section 12.3
(equation (12.3) and following). If we recognize only militants and the oppor-
tunists in the three parties, then a PUNE must satisfy the equations:

— VotV =x"Vv" + %' VH + XPVRE 4 VI,
(14.12)
VotV = YO0V 4 yIVR! 4 2VR 4 PV,

where the x’s and y’s are non-negative, and complementary slackness holds
(that is, a Lagrangian multiplier is zero if its corresponding constraint is slack
at the policy). The reader is by now familiar with the reasoning that generates
equations (14.12).
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Let the density of F be denoted f. Defining ¢ (a, G, a/, G') = %Zg—jg;, we

can write (examine (14.10)):
(14.13) Vz"¥(a, G, d,G) = (0 + p)f (¢ (a, G, d, GV,

where the gradient in (14.13) is the vector of derivatives with respect to either
(a, G) or (d’, G'). Now the term (w + p)f (¢ (a, G, a’, G')) is a positive number,
$0, in equations (14.12), we may simply absorb it into the non-negative x and
y coefficients, and we may consequently rewrite (14.12) as:

—Vi¢ ="V + %' Vh' + VR 4+ VI,
(14.14)
VPBé. :yOVVPB +ylvh1 +y2vh2 +y3vh3‘

Thus the solutions of (14.14) are independent of the distribution of A’s. It is
not the case, however, that the set of PUNEs is independent of F, because a
solution of (14.14) is only a PUNE if no party wins a majority at that policy
platform, and to determine that, we need to know the distribution F.

Recall that in the PUNEs we are searching for, (a®, G%) = (a*, G*). The equa-
tions (14.14) plus the binding constraints will always constitute a system with
two more unknowns than equations, so we are searching for a 2-manifold of
solutions. When we find a solution of (14.14), we must check the ancillary con-
dition that the W party prefers an equal-probability lottery between (a", G')
and (a*, G*) to the one between (a", GY) and (a"®, G'®) and, similarly, that
the PB party prefers to coalesce with the C party rather than with the W party.
Finally, we must check that, for every X, the worker-shopkeeper of type A prefers
either the W party or the PB party to (a*, G*), for we made this assumption
above in calculating the fraction of the vote received by the three parties—the
vote fraction received by the C party should be precisely (1 — €)c. We must,
finally, verify that ¢*(a", GY, a8, GPB) > 0, for we assumed this in deriving
(14.9).

We proceed to the details of solving equations (14.14). Unfortunately, we
did not succeed in finding solutions of the postulated type for the parameter
values of the model used in Chapter 12. We finally worked with the following
parameterization:

{w, 0,6, 8,7, B,a, €} = {.43, 43, .14, .66, .15625, 8940.72, 50000, .9}.
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Table 14.4 PUNEs in the three-party model

Party a G Vote share Expected utility
w .672 2477 495 $27,585
PB .037 1385 379 $42,946
C 145 5989 126 $39,364

We chose F to be the normal distribution with mean 0.5 and standard deviation
0.5/3; this distribution has 99.9% of its mass on the interval [0, 1].°

We indeed found PUNEs (that is, solutions of (14.14) with non-negative
Lagrangian multipliers, and for which the ancillary conditions assuring that
coalitions of the postulated type form) where all three parties propose a positive
rate of income taxation, the PB party proposes that all taxes be spent on
infrastructure (none on transfers), and the C party proposes its ideal point,
which also involves spending all taxes on infrastructure. The only party that
proposes transfer payments is W. In a run with 2000 iterations, we found
16 PUNE:s satisfying the conditions stipulated above. Table 14.4 presents the
average values of the policies and the vote shares.

Although the transfers proposed in the W policy are not listed in the table,
we can compute that they are on average about $25,300. There is thus a sharp
contrast in the policies of the three parties (no convergence here!). It is note-
worthy that in all the PUNEs we found, the vote share of the W party is between
.492 and .499. The one disappointing characteristic of these equilibria is that
the utility (that is, expected post-tax income) of the capitalists and their agents
is less than that of the wealthiest members of the petite bourgeoisie. This is
because we had to increase the number of capitalists (and hence decrease their
average income) from their number in Chapter 12 in order to find PUNEs of
the stipulated kind.

14.6 Conclusion

We have studied several models of three-party competition in both the unidi-
mensional and the multidimensional case. Our main aim has been to show

6. It is convenient to use a distribution whose support is the whole real line, because then 7"

is a smooth function (see (14.10)). If we use a distribution with support [0, 1], then 7" will have
kinks when ¢ is 0 or 1.
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that Wittman equilibrium generalizes to produce political equilibria in the
three-party model when the policy space is unidimensional, and that PUNE
generalizes to produce equilibria when the policy space is multidimensional.
The main complexity in moving from the two- to the three-party model is that
a process of coalition formation occurs after the election and before the policy
is implemented. We have truncated that process here, by giving all power to the
plural party, in the sense that that party can name its coalition partner. (In real
coalition formation, the formateur’s preferred partner may reject the offer.)
This was a modeling choice, made because we wanted to concentrate analysis
on the process of voting. We proposed that two kinds of voter exist, sincere and
strategic, and we proposed a specific psychology for the strategic voter.

We have spent some time in calculating equilibria for specific examples,
because this illustrates that these equilibria do, in general, exist. Furthermore,
in the model of section 14.3, there is interesting complexity in party strategy,
on account of the nature of the coalition formation and policy choice process.
There is less complexity in party strategy in the example of section 14.5, because
the Baron-Diermeier coalition formation process is simpler than the one put
forth early in the chapter.
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Mathematical Appendix

A.1 Basics of Probability Theory

A.1.1 MEASURABLE SPACES

A measurable space is a pair (2, F), where Q is an abstract set, called the sample
space, and J is called a o-field, which is a set of subsets of €2, with the following
properties:

i) QedF;
(ii) if A € F then A° € F, where A€ is the complement of A in €;
(iii) if {A,, A,, . . .} is a countable set of subsets of €2, each in F, then their
union is in F.

A measure space is a measurable space equipped with a measure, (2, F, ),
where 1 I — R, the positive real numbers. The measure u must satisfy:

(1) u(@) = 0, where @ is the empty set;

(2)if A, A,, ... 1is a countable sequence of pairwise disjoint sets, which are
members of F, then w(U;A;) = Y, u(A,;). The second property is called
countable additivity.

A probability space is a measure space where, in addition:

(3) u(2) = 1.
In this case, we call u a probability measure, and the members of F are called
events.
Examples

1. Let @ =R, let J be the Borel field on R, defined as follows. Begin by putting
all the intervals of the form (a, b), (a, b], and so on in F, where b > a. Then
“close” F w.r.t. the operations (i), (ii), and (iii) above (that is, include in F all
complements of these intervals, countable unions of these sets, complements

309
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of these sets, and so on). This very large set F is by definition a o -field and is
called the Borel field.
For an interval (a, b), define the function A* as follows: let A*((a, b)) = b — a.

Theorem A.1 There is a unique way of extending A* to a measure, A, on F.

A is called Lebesgue measure.
Note that A is not a probability measure, since A(£2) is infinity.

2. Let Q = [0, 100], and let F be the Borel field on 2. Define, for an interval
(a, b), u((a, b)) = (b — a)/100. As in theorem A.1, there is a unique way of
extending this function to a measure, i , on F. Note now that u(2) =1, so
(2, F, ) is a probability space and u is a probability measure. u is called the
uniform measure on (L2, F).

The singleton sets consisting of just one point are all in the Borel field. Their
measure under u is zero. Indeed, any countable union of points is a set of
p-measure zero. There are even sets with an uncountable number of points of
measure zero. So a set can be very large in cardinality, and yet have measure
Z€r0.

3. Let €2 be the set of real numbers describing the incomes of every household
in the United States, a finite set. Let F be the set of all subsets of 2 (a finite set).
For any subset A of €2, define

L (A) = the fraction of households in the United States whose income is a
number in the set A.

Note that p is a probability measure on (€2, F): it satisfies criteria (1), (2),
and (3) of the definition. (Think about countable additivity, which in this case
reduces to finite additivity.)

w is called a discrete measure, because it takes on only a finite number of val-
ues. In this application, u is called the income distribution of U.S. households.

4. In social science, it is often useful to approximate large, finite sets (like the
150,000,000 or so incomes of households in the United States) by a continuum.

In fact, actual income distributions are often well approximated by a “con-
tinuous” distribution called the lognormal distribution, defined as follows. Let
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Q =R_, let J be the Borel field on the €2, and define the measure p on a set
S € F as follows:

—[Log(s/m)]?

1
Al = ds,
(A  u(S) /50(271)1/2 exp 202 s
S

where m and o are parameters (positive numbers). It is certainly not obvious
that u is, indeed, a probability measure. Additivity is obvious, since the integral
is an additive function, but the fact that ©(£2) = 1 must be shown.

Many national income distributions in the world can be well approximated
by suitable choice of the parameters m and o.

The actual income distribution in the United States (of Example 3) has about
150,000,000 parameters—that is, one cannot specify the exact distribution
without specifying the income of every household. The lognormal distribu-
tion has only two parameters! Thus if we can find a lognormal distribution
that approximates the actual distribution, we have achieved a tremendously
simplified description of the real world.

In particular, we can operate with the lognormal distribution analytically,
whereas the exact income distribution of Example 3 is an extremely compli-
cated function, which can only be studied by making arduous computations
on a large-memory computer.

5. Suppose we have a population of agents who all have utility functions of
the form u(x, G) = x + « log(BG), where (x, G) are two goods, and «, B are
positive parameters. An individual’s type, then, is (&, 8). There is a distribution
of the parameters («, 8) in the population. How would this be stated formally?

Let @ =R, x R, let F be the Borel field on €2, and for any set S € F, define
1 (S) as the fraction of society for whom (¢, B) € S. Then p is a probability
measure: we say the traits («, 8) are distributed according to the probability
distribution w on .

Definition Given a probability space (2, F, ). We say Statement X(w) is
almost surely true if there is a set S € &, such that u(S) =1, and X(w) is true
for all w € S. We also say “X(w) is true with probability one”

A.1.2 THE LEBESGUE INTEGRAL
We are given a measure space (2, F,u). A function ¢ : Q — R is said to be
an F-measurable function iff, for any Borel set B of R, the set ¢~ 1(B) € F: the
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inverse images of Borel sets in R are measurable sets under y . A real-valued
function whose domain is a sample space is called a random variable.
We now define the integral

/¢(S)du,
Q

which can be equivalently written as fQ ¢ (s)du(s), or fQ ¢ (s)u(ds). The intu-
itive idea is that | o 9 (s)dw is the weighted sum of the function ¢ on the sample
space €2, where sets S in €2 are weighted by their “sizes,” that is, their measures
w(8). If p is a probability measure, then f o ®(s)du has the interpretation of the
average value of ¢ on 2, where events S in €2 are weighted by their probabilities
(n(S)).

Itis beyond the scope of these notes to give a precise definition of the Lebesgue
integral, but you can, for practical purposes, think of it as follows. Partition the
range of ¢ as illustrated in Figure A.1, and, for each element R; in the partition,
calculate its inverse image ¢~ ! (R;), which is an element of F, by hypothesis, and
has measure u(¢~'(R;)). Now take, for each i, an element r; € R; and add up:

> (@ (R)).

Now let the partition size go to infinity. This sum converges to the Lebesgue
integral [, ¢ (s)dp.

The reader will recall that the Riemann integral has the interpretation of the
area under the curve ¢, while the Lebesgue integral has the interpretation of
the average value of ¢. If u is Lebesgue measure, then the Riemann integral and
Lebesgue integral of a function are the same (assuming both limits exist). So you
may think of the Lebesgue integral as a generalization of the Riemann integral,
where we may integrate with respect to measures other than the uniform
(Lebesgue) measure.

Examples

1. Let u be a probability measure. Consider the function ¢ (s) = s. The Lebesgue
integral fﬂ ¢(s)du = fQ sdu is called the mean of the measure w. It is the
average value of s w.r.t. the measure u.
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Figure A.1 The Lebesgue integral

Thus, for example, the mean income, if u is an income distribution, is given
by this formula.

2. Let m be the mean of a probability measure p. We define the variance of u by

var (u) = /(s — m)*dpu.

Q

This is a measure of the average deviation from the mean of elements in .

3. Consider A, Lebesgue measure. The integral [, ¢(s)dA, to repeat what
was said earlier, is simply the familiar Riemann integral [, ¢ (s)ds when the
latter exists. Thus, like Moliere’s character Monsieur Jourdain,! you have been
Lebesgue-integrating all your life, and didn’t know it.

A.1.3 THE DENSITY FUNCTION

Let u and v be two measures on the measurable space (€2, F). We say that
W is absolutely continuous w.r.t. v iff whenever v(S) =0, then u(S) =0. If u

1. Who was delighted to learn that he had been “speaking prose” his whole life.
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and v are each absolutely continuous w.r.t. the other, then they are said to be
equivalent measures.

Examples
1. The lognormal probability measure is equivalent to Lebesgue measure on
the positive reals.

2. Consider the discrete measure on [0, 1] defined as:

o=

if 25€8 and .75¢S

0 if 25¢S8 and .75¢S
u(S) =
if .75€S and .25¢S

=

1 if .25€S and .75€8S.

Check that this is a probability measure on [0, 1].

The measure p is not absolutely continuous w.r.t. Lebesgue measure on
[0, 1], since Lebesgue measure assigns a value of 0 to any point, while u({.25})
=0.5.

Theorem A.2 (Radon-Nikodym) Let u be absolutely continuous w.r.t. v on
(2, ). Then there exists an F-measurable function f such that, forany S € ¥,

@ )= / F(s)dv
S

and, for any F-measurable function ¢,

(b) / b(s)dp = / HOf v,
Q Q

This is an extremely useful theorem. Let the measure v in the theorem be
Lebesgue measure. Then the theorem says that if a measure p is absolutely
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continuous w.r.t. Lebesgue measure, there exists a function f, such that for any
function ¢:

wn [o0du= [serod
Q Q

f is called the Radon-Nikodym derivative of u, or the density of .

The formula (A.2) is in fact how we compute Lebesgue integrals—if their
measures have densities. We convert them to standard integration problems
via the formula (A.2).

Note Infact, formula (a) of the Radon-Nikodym theorem can be derived from
formula (b), as follows. For a given set S € F, define the random variable

1 if se$
$(s) = ‘
0 if sé&S.

¢ is called the indicator function of S, and is usually denoted 1.
Now, from the definition of the integral, we have

/1S(s)du =u(S) and /15(5)f(5)dv = /f(s)dv,
Q S

Q

which together give us (a) from (b).

In fact, in many cases, the only way we have of defining a probability measure
is by its density! For example, the normal distribution, which is a probability
measure, is defined by its density. The lognormal distribution, described ear-
lier, is defined by its density—the integrand in (A.1) above is in fact the density
of the lognormal probability distribution.

Exercise Consider Example 2, given just above the statement of the Radon-
Nikodym theorem. Observe that u does not possess a density; that is, there is
no function f for which (A.2) is true.
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Figure A.2 The density of a beta measure

The density function is often graphed to illustrate the probability distribution.
The “bell-shaped curve” is the density of the normal probability distribution
onR.

In Figure A.2, I plot the density function of a useful probability distribution
on the interval Q = [0, 1], called the beta distribution. This is a two-parameter
family of probability measures, whose density functions are given by

f(s;a,b) = 71— s)b_l/Beta[a, bl,

where a, b are real numbers, and Beta[a, b] is the value of the “beta function.”
Note the role of Betala, b] is just to normalize the density so that its integral
over [0, 1] is one. In Figure A.2, I have chosen a =2, b = 3, and plotted the
density f using Mathematica.

Example Letf bethe density of the probability measure p. Then the mean, m,
of u is given by m = [, sf (s)ds. (Follows immediately from above formulae.)

Remark A common misinterpretation.

Consider the latest formula for the mean of u, and f is its density. Suppose
W is an income distribution, and so s is a value of income. People often say
that f (s) is the “fraction of people with income s.” This is wrong. The fraction
of people with income s must be zero, since p is absolutely continuous w.r.t.
Lebesgue measure, which assigns measure 0 to any point. Indeed, you will note
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that the value of density functions is often greater than 1, which makes this
interpretation bizarre.

If 4 is a continuous measure (that is, absolutely continuous w.r.t. Lebesgue
measure), it is referring to a world with a continuum of people. The ratio
f(s)/f (t) has meaning: it is the ratio of the number of people with income
s to the number with income t. This ratio can be finite, even if there are an
infinite number of each type!

One convenient interpretation is to think of f(s) as the number of people
with income s, which is very large. Under this interpretation, [, sf (s)ds is the
total income in the society. But we now divide by the total number of people,
and that gives us average income in the society. Thus we effectively normalize
the number of people in society to “one,” letting that take the place of a very
large number.

If you use this trick—thinking of f (s) as the number of individuals with trait
s—you will rarely go wrong in using density functions.

Referring to Figure A.2, suppose s is income, where the largest income in
societyis 1 (hundred thousand dollars). You might think of there being 175,000
people with incomes of .4 (that is, $40,000), and about 25,000 people with
incomes of $80,000. It would not be correct, however, to say that “the fraction of
people with income $40,000 is 1.75.” To get the fraction of people with income
in a certain interval we calculate the area of f under the curve on that interval,
that is, the integral of the density over that interval.

A.1.4 THE (CUMULATIVE) DISTRIBUTION FUNCTION OF A MEASURE
Let (R, F, u) be a probability space. Define the function M : R, — [0, 1]
by M(x) = u([0, x]). M is called the distribution function, or cumulative
distribution function (CDF), of u.
Note that M is just an abbreviated form of the measure—it tells us the
measure of certain intervals. The function M is, of course, increasing.
Suppose that u has a density f. Then, according to the Radon-Nikodym
theorem, we can write

(A3)  u(0,x]) =M(x) = /f(S)dS
0

Now, attack (A.3) with the fundamental theorem of calculus, and we have

M'(x) = f(x),
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where ’ stands for derivative. Thus the derivative of the distribution function is
the density function.

Formula (A.3) enables us to calculate the distribution function of various
familiar measures (for example, the normal distribution).

Definition Let (R, J, u) be a probability space. The median of u is that
number q such that ([0, g]) = 0.5; or, if M is the CDF of u, M (q) = 0.5.

For further elaboration of these concepts of probability theory, consult any
advanced textbook on the subject, such as Durrett (1996).

A.2 Some Concepts from Analysis>

A.2.1 CONVEXITY
Let S be a set in R". § is convex iff, for any pair of points x, y € S, and any
number A € [0, 1] we have Ax + (1 — L)y € S.

Letf : R" — R. f is a concave function iff, for all x, y € R", and all A € [0, 1],
fOx+ @A =1y)=Af(x) + (1 —A)f ). f is a convex function iff for all x,
yeR"%andall A € [0, 1], f(Ax + (1 — A)y) < Af(x) + (1 — Mf ().

Thus linear functions are both convex and concave.

Let f : R” — R. f’s upper contour set at value k is {x | f (x) > k}. f’s lower
contour sets are analogously defined.

It is easy to observe that the upper contour sets of a concave function are
convex sets, and the lower contour sets of a convex function are convex sets.

Often, all we need to know about a function is that its upper contour sets are
convex. This is a weaker property than concavity of f. We define:

Afunction f : R" — Ris quasi-concave iff all its upper contour sets are convex.
A function f : R” — R is quasi-convex iff all its lower contour sets are convex.

Iff : R — R, and f is monotone increasing or monotone decreasing, then it
is easy to see that f is both quasi-concave and quasi-convex. Of course, such a
function need not be concave or convex.

It is not difficult to show that:

Fact A function f : S — R is quasi-concave on a convex set S iff for any pair
X,y € S, and any number X € [0, 1], f(Ax + (1 — A)y) > min[f (x), f (¥)].

2. The concepts discussed here are all discussed in greater depth in the mathematical appendix
of Mas-Colell, Winston, and Green (1995), to which the unsatiated reader is referred.
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There is an analogous statement for quasi-convex functions, where the in-
equality sign is reversed and the min operator is replaced by the max operator.
We have the following useful and easily proved

Fact Iff:S— T is a concave function and S is a convex set, and x € Sis a
local maximum of f, then x is a (global) maximum of f on S.

Let al, a% ..., a" be points (vectors) in R". The convex cone generated, or
spanned, by this set of points is C = {x € R" | x = }_ A'a’ where A’ > 0 for all i}.

Given the vector space R”, the inner product -, or scalar product, is a function
mapping R” x R” — R, given by

xX-y= Z XiYi
i=1

Given a vector v € R”, the set {x € R" | v - x = 0} is a subspace of dimension
n — 1. A subspace of dimension n — 1 is called a hyperplane. Conversely, given
a hyperplane S C R”, there is a vector v such that S = {x | v - x = 0}. v is called
the normal vector to the hyperplane S. We also say that v is orthogonal to S. The
normal vector is not unique, but it is unique up to scalar multiples. If v - x > 0,
we say that the vector x lies on the same side of the hyperplane (normal to v) as
v; if v - x < 0, we say that the hyperplane S separates v and x. More generally,
given any two points x, y in R”, we say that the hyperplane orthogonal to v
separates x and y if v-x > Oand v - y < 0.

The next result is the basis of much of optimization theory. In particular, it
is the key to our characterization of PUNE in Chapter 8.

Farkas’ Lemma Letal, a2, ..., aN, bbe N + 1 vectors in R™. Then either

(A) there are non-negative numbers ALAL L AN such thatb = > Al or
(B) thereis avectorv € R™ suchthatb -v < OQanda' - v > Oforalli=1,...,N,

but never both A and B.

In words, Farkas’ lemma says “either b is in the cone spanned by {a, a% ...,
aN} or there is a hyperplane (orthogonal to the vector v) that separates b from
all points in that cone—but never do both of these statements hold.”
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Figure A.3 Farkas’ lemma

Figure A.3a illustrates Farkas’ lemma. Here is a case where b is not in the
cone spanned by a' and a?, and the hyperplane S orthogonal to v separates b
from the cone. Figure A.3b is another case covered by the lemma, although here
the hyperplane does not “strictly separate” b from a' and a?. (The hyperplane
contains a! and a2.)
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Farkas’ lemma is a special case of the more general separating hyperplane
theorem (for which, see the mathematical appendix of Mas-Colell, Winston,
and Green 1995).

Our application of Farkas’ lemma requires an understanding of the direc-
tional derivative of a function. Let f : R” — R be a differentiable function. The
directional derivative of f at x in the direction d is

i L& 19D — ()
im

§—0 )

= D,f (x).

Geometrically, this is the rate of change of f at x as we move toward x, in the
domain of f, in the direction of d.

Fix x and d, and define the function g(8) = f (x 4+ §d). Observe that ¢'(0) =
D, f(x). Now we can compute g’'(0) using the chain rule:

g0 =Y fix+0dd,
where f; is the ith partial derivative of f. But this means that
Dyf (x) =¢'(0) = Vf(x) - d,

where Vf (x) is the (row) vector of f’s partial derivatives, evaluated at x. Thus
we can say that f increases in value as we move away from the point x in the
direction d if Vf (x) - d > 0. (The statement is not “iff” because it could be that
f increases in direction d at x but Vf (x) - d = 0, which is the case if x is a local
minimum of f.)

A.2.2 FIXED-POINT THEOREMS

While the mathematical foundation of optimization theory is the separating
hyperplane theorem, the mathematical foundation of equilibrium theory is
the fixed-point theorem. We employ two fixed-point theorems in the text.

Brouwer’s Fixed-Point Theorem Let A C R” be a compact, convex set, let
f : A — A be a continuous function. Then f possesses a fixed point, a point x € A
such that f (x) = x.

We define a correspondence as a mapping f : S —— T, where the images of
points in s under f are subsets of T. Thus we write f(s) € T.
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A correspondencef : S ——> T is upper hemicontinuous iff, given any sequence
of points 5!, 5%, . . . in S which converge to a point s* in S, and points ¢’ € f(s'),
for all 7, such that {t'} converges to a point t* in T, then t* € f(s¥).

A function is a single-valued correspondence.

Fact A single-valued correspondence is upper hemicontinuous iff, when
viewed as a function, it is continuous.

Kakutani’s Fixed-Point Theorem Let A be a nonempty convex, compact set in
R", and let f : A —— A be an upper hemicontinuous correspondence of A into
itself, whose images are nonempty convex sets. Then f possesses a fixed point, a
point a € A such that a € f(a).

The reader may consult Mas-Colell, Winston, and Green (1995, 953) for
figures illustrating Kakutani’s theorem.

Because of the Fact stated just above, Kakutani’s theorem is a generalization
of Brouwer’s theorem. (A set consisting of one point is a convex set.)

Letf : S—— T beacorrespondence and let g : S —— T be a correspondence
such that, for all s € S, g(s) € f(s). Then g is said to be a refinement of f.

A.2.3 MISCELLANY

(1) The implicit function theorem is an important and standard result of ad-
vanced calculus. For a discussion, the reader may consult Mas-Colell, Winston,
and Green (1995, 940-942) or any advanced calculus text.

(2) The theorem of the maximum. Consider the problem of maximizing a
continuous function, f, on a compact feasible set, K, which lies in a larger set
X. Suppose now that the set K changes with the value of a parameter vector,
so we may more precisely denote it K(q), where g is a parameter vector lying
in some set Q. For each such parameter vector, there will be a nonempty set
of maximizers of f, which we may denote M(g); M is thus a correspondence
mapping Q into X. We may also define the “value function,” v(g), which gives
the value of f at its maximum on K(g). The theorem in question asserts that
if the mapping g —— K(q) is continuous (as a correspondence), then the
correspondence M is upper hemicontinuous, and the function v is continuous.
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