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1
Introduction

1.1 About Causality and This Book

From the beginning of our lives as human beings until the end, we are
permanently confronted with questions about causes and effects: that is, the
consequences of doing one thing versus another. Would I rather eat
croissants or muesli for breakfast? What would I enjoy more? Would I
rather go skiing or snowboarding to benefit the most from the current snow
conditions (snowboarding on icy slopes can be a hassle, as the fans of
winter sports among us might know)? Should I study for my statistics exam
next week, or will I pass even if I don’t? This also applies to broader (and
possibly socially more relevant) questions concerning politics, business or
work life, health, and society in general, such as: Will more education
increase my salary? Does a discount on a product or service increase sales?
Does smoking or drinking kill? Does harsher punishment reduce crime? Do
mothers work more when childcare is available for free? Does trade and
globalization increase or reduce wealth and/or income equality? Does free
education foster a more egalitarian society in terms of opportunities?

In short, reasoning about the impact of specific options or actions is an
integral part of our lives as human beings. To conjecture about such causal
effects, we frequently take into account past observations, be they based on
personal experiences, information (and also misinformation) in the media or
social media, or the opinions of other people. Depending on where our



information comes from and how we process it, our judgments on causality
might be more or less biased in one or the other direction, but there is little
doubt that learning (or aiming to learn) from empirical observation is one of
the most remarkable human qualities. This statement also applies to social
sciences and statistics, where a large and growing number of researchers
and analysts investigate empirical data (i.e., systematically recorded
observations) in order to causally evaluate the impacts of a multitude of
human behaviors and policies based on quantitative methods.

The last several decades have seen important methodological advances
in data-based causal analysis, including its combination with artificial
intelligence (specifically so-called machine and deep learning) that appear
very relevant in the light of the ongoing digitization and availability of
more comprehensive data. In addition, such methods became more and
more standard for evaluating the impacts of the actions or policies of public
administrations (e.g., social policies), international institutions (e.g.,
development aid), companies (e.g., price policies or marketing strategies),
or health-care providers (e.g., medical treatments), to name only a few
examples. At the center of interest is the causal effect of a particular
intervention or treatment, such as training for job seekers, a new type of
surgery, or an advertising campaign, on an outcome of interest, such as
employment, health, or sales, by inferring what the outcome would be in the
presence and the absence of a specific intervention.

This textbook gives an introduction to the causal analysis of empirical
data. It presents the most important quantitative methods for evaluating
causal effects, along with the statistical assumptions they rely on, which are
ultimately assumptions about human behavior. For this reason, the
discussion puts a great deal of emphasis on conveying the ideas and
intuitions behind the various methods, as well as their similarities and
differences, using examples and graphical illustrations. At the same time, it
also formally explores the key concepts using statistical notation, albeit not
always with the greatest level of detail. Readers with a basic knowledge of
statistics, including topics like probability theory, averages, covariances,
hypothesis tests, and linear regression, should be able to follow all or most
of the formal discussion without prohibitive difficulty. Depending on each
reader’s prior knowledge and focus, some of the material might even be
skipped, such as the rehearsal of linear regression and its properties in the



context of causal analysis offered in sections 3.2 and 3.3. This book,
therefore, is suitable for PhD, master’s, and advanced bachelor’s degree
courses, as well as for autodidacts with basic knowledge about and an
interest in statistics and causal analysis.

It is worth mentioning that this work covers several methodological
developments not yet considered in other textbooks, like approaches
combining causal analysis with machine learning. Therefore, it is
comparably comprehensive regarding methods of impact evaluation. At the
same time, this textbook aims to be “clean and lean”: while offering fair
treatment of the topics, it avoids going into the smallest details, so the
discussion may sometimes appear less extensive than those in other
textbooks. Furthermore, it sometimes emphasizes conceptual analogies or
overlaps between various methods to avoid redundancy and burdensome
statistical notation. All of this serves the purpose of appropriately balancing
breadth and depth while making the reader familiar with the most important
concepts of causal analysis in a compact way, inspired by Albert Einstein’s
quote: “Everything must be made as simple as possible. But not simpler.”

Last but not least, this book also provides a range of applications of the
various methods to empirical data using the open-source software R, which
is currently one of the most powerful options for causal analysis due to the
swift implementation of even the most recent methods. This is useful for
students, researchers, and analysts who want to be able to immediately
apply such methods of impact evaluation and causal machine learning.
Introductory knowledge in R is sufficient to follow the applications, which
are based on user-friendly commands and consist only of a few lines of
code.

1.2 Overview of Topics

This textbook starts with an introduction to the concept of causality in
chapter 2, particularly the difference between the causal effect of an
intervention or treatment on an outcome of interest and a mere noncausal
association between the two. For instance, we might observe that
individuals with a higher education earn on average more than individuals
with less education. However, it is unclear whether this positive association
between earnings and education is indeed solely caused by education, or



also by the fact that higher- and lower-educated individuals also differ in
other background characteristics likely relevant for earnings (e.g.,
intelligence, motivation, or other personality traits).

Chapter 3 introduces the probably most intuitive method for causal
analysis: namely, the social experiment. The latter assigns the treatment
(e.g., a vaccine versus a placebo treatment) randomly, such as by flipping a
coin. Under successful randomization, implying, for instance, that no one
can manipulate the result of the coin flip, experiments can (at least under a
sufficiently large number of study participants) generate treated and
nontreated groups that are similar in their background characteristics. In this
case, differences in average outcomes (e.g., health) across treated and
nontreated groups can be credibly attributed to the treatment, as the groups
are otherwise comparable. The discussion of the experiment-based
estimation of differences in average outcomes is based on linear regression,
one of the most popular statistical methods out there, and also covers
desirable properties that any data-based method should have.

For instance, we usually want a method to get the causal effect right on
average when applied to many data sets (e.g., customer surveys) coming
from the same population (e.g., the total number of customers), a property
known as unbiasedness. We also want a method more likely to come close
to the true effect, as we increase the size (i.e., number of observations) in
the data, a property known as consistency. Furthermore, we will also look
into the concepts of hypothesis tests (and so-called statistical inference),
which we typically use to judge the likelihood that an effect found in the
data is coincidental (or spurious) in the sense that it does not really exist
(which may happen if a customer survey is by chance not quite
representative for all customers). In the context of the social experiment, the
discussion provides a fair amount of technical details (e.g., a definition and
proof of unbiasedness) about these concepts and properties. The latter also
carry over to other, nonexperimental methods considered in this book, for
which we spare such details (e.g., we refrain from proving unbiasedness for
further methods) and rather focus on the key assumptions and underlying
intuition of each approach.

Even though experiments are frequently regarded as the gold standard
for evaluating causal effects, nonexperimental methods are a very important
cornerstone of causal inference and frequently applied in practice. One



reason is that many interesting research questions cannot be investigated by
means of experiments, such as due to financial constraints or ethical
reasons. As an example, consider the effect of education on earnings, where
it would be hard to imagine to randomly admit students to different levels
of schooling. One of the most popular nonexperimental strategies is based
on the assumption that the researcher or analyst can measure (and therefore
observe) all characteristics that influence both the decision to receive a
treatment (e.g., a discount) and the outcome of interest (e.g., buying
behavior). Such characteristics, commonly referred to as covariates, might
include age, income, or gender and might be asked in a questionnaire or
come from administrative data sources.

Chapter 4 presents a range of different methods for causal analysis under
such a “selection-on-observables-assumption,” including so-called
regression, matching, weighting, and doubly robust estimators. The idea
underlying any of these approaches is to only compare the outcomes of
subjects exposed and not exposed to the treatment that are similar in terms
of covariates. This shall guarantee that one compares “apples with apples”
when assessing the causal effect, in order to avoid that the treatment effect
is mixed up with any impact of differences in the characteristics. The aim is
thus to mimic the experimental context with the help of observed
information: After finding groups with and without treatment that are
similar in observed characteristics, differences in the outcomes are assumed
to be exclusively caused by differences in the treatment. The “selection-on-
observables assumption,” therefore, implies that among subjects with the
same characteristics, the policy is as good as randomly assigned. We will
also discuss a range of extensions of the standard evaluation framework
with a binary treatment (just taking the values 1 and 0), such as treatments
that take several values, sequential treatments where several treatments take
place in different points of time (like a job application training, followed by
information technology training), or the evaluation of causal mechanisms
by analyzing through which intermediate variables the treatment affects the
outcome.

In the light of ongoing digitization and the ever-increasing availability of
data and observed covariates (e.g., shopping behavior on online platforms),
the question arises of how to optimally exploit this wealth of information
for the purpose of causal analysis. To this end, chapter 5 combines the



concepts of the previous chapters with a subfield of artificial intelligence
(namely, machine learning). When invoking a selection-on-observables
assumption, such causal machine learning algorithms can learn in a data-
driven way in which covariates affect the treatment and the outcome in a
significant way to make sure that we compare “apples with apples.” This
appears particularly useful in big data contexts where the number of
observed covariates is very large—maybe even larger than the number of
observations. The latter scenario can make it very hard, if not impossible,
for an analyst or researcher to manually select the covariates in which
treated and nontreated groups should be comparable. In addition, such a
manual approach may jeopardize desirable statistical properties like
unbiasedness.

Another important domain of causal machine learning is the detection of
important effect heterogeneities across subgroups in the data, be it in the
experimental or nonexperimental context. Let us, for instance, consider the
case in which a marketing intervention is more successful in promoting a
product among younger customers than among older ones, implying that the
causal effect of marketing is heterogeneous in (i.e., different across) age
groups. Causal machine learning algorithms can learn in a data-driven way
which covariates (like age) importantly drive the size and heterogeneity of
the effect, which can be useful for customer segmentation. Very closely
related to this argument is a further variant of causal machine learning
called optimal policy learning, which learns in a data-driven way the
optimal assignment of a treatment (e.g., a marketing intervention) to
specific subgroups defined in terms of observed characteristics (e.g.,
younger or older customers), in order to target those groups in which the
effect is largest. This aims at optimizing the overall effect of a specific
treatment that may come with a cost or budget constraint (e.g., a marketing
intervention with a fixed budget).

It is worth noting that any of these causal approaches are distinct from
conventional predictive machine learning algorithms, which are not suitable
for causal analysis per se, but take such algorithms as ingredients. Examples
include so-called decision trees, random forests, lasso/ridge regression,
boosting, support vector machines, and neural networks. Chapter 5 very
briefly describes the basic intuition underlying some of these predictive
machine learners (e.g., based on contrasting them with linear regression),



but for a more comprehensive discussion, the interested reader is
encouraged to address one of the many textbooks or (often free) online
courses on predictive machine learning. Finally, we will also look at
algorithms for optimally designing repeated experiments (e.g., repeated
advertisements on an online platform), depending on the relative
effectiveness of alternative treatments in past experiments, which is called
reinforcement learning. On the one hand, this approach aims at learning
over time which treatment is most effective (e.g., which advertisement
generates the most revenue). On the other hand, it tries to drop treatments
that turn out to be ineffective at an early stage of the experiment for the
sake of overall effectiveness.

Chapter 6 introduces a further approach to causal inference based on so-
called instrumental variables. These variables possess the property that they
affect the treatment whose causal effect is of interest, but not directly the
outcome. This is easiest described in the context of a broken (i.e., failed)
experiment, in which some subjects deviate from their assigned treatment.
Let us assume that employees are randomly assigned to be eligible for a
training program, but some of those assigned to it decide not to take it.
While the assignment is random, and therefore satisfies the experimental
context, the decision to actually participate is not. Those subjects who are
not participating despite being eligible might be less motivated than others.
In this case, the motivation level of actual participants and nonparticipants
(rather than eligible and ineligible individuals) differs, such that comparing
the wages of both groups would mix up the effect of the training with that
caused by differences in motivation.

In this context, the assignment may be used as an instrumental variable if
it induces at least some subjects to participate in the training but does not
directly affect wages through mechanisms other than training participation.
Such mechanisms to be ruled out include, for instance, an effect of mere
assignment (rather than actual participation) on the motivation at work (e.g.,
when feeling discouraged or disappointed due to not being assigned to
training). If assignment meets these conditions, the following strategy can
be applied: First, one measures the effect of an assignment on the outcomes
by comparing the outcomes of the groups assigned and not assigned to the
training. In the absence of a direct effect, this corresponds to the impact of
the assignment on training participation times the effect of training



participation on the outcome. Second, one measures the effect of the
assignment on training participation by comparing the participation
decisions of the groups assigned and not assigned to the training. Finally,
dividing (or scaling) the first effect by the second produces the impact of
training participation on the outcome. Starting from this setup, we will also
consider various extensions, possible modifications of the assumptions in
the presence of observed covariates, and how previously mentioned
estimation methods, including regression, matching, weighting, doubly
robust (DR) estimation, and causal machine learning (CML), can be
adapted to instrumental variable approaches.

Chapter 7 considers difference-in-differences (DiD) and related
approaches, which require that the outcome of interest is observed over
time—that is, prior to and after the introduction of a treatment—and that the
treatment is introduced for one group but not another. The DiD method
relies on the assumption that in the absence of the treatment, the outcomes
of the groups with and without treatment would have experienced the same
change over time: that is, they would have followed a common trend. Let us
consider a labor market reform as a treatment, which increases the
unemployment benefits for job seekers who are at least 60 years old but not
for younger groups. Simply comparing the employment outcomes of older
and younger groups after the reform does not show the causal effect of the
reform because differences in employment might be caused by both the
treatment or age-related factors. Likewise, simply comparing the outcomes
of job seekers aged 60 or older before and after the reform may not give the
causal effect of the reform either, because differences in employment might
be caused by both the treatment effect and a general time trend in
employment: for example, due to a change in the economic conditions (or
the business cycle) over time.

However, if such a time trend in employment can be assumed to be the
same across age groups, we may measure it by the before-and-after
treatment comparison in the outcomes among younger individuals who are
not affected by the reform. In this case, subtracting from the before-and-
after treatment difference in employment among the 60+ group (which
consists of the policy effect plus the time trend) the before-and-after
difference among those below 60 (which consists of the time trend alone)
yields the treatment effect. That is, taking the difference in (before-and-



after) differences across groups allows for evaluating the reform. Chapter 7
also discusses several extensions, such as when covariates are controlled for
or the treatment is introduced in different periods across different groups.
Finally, we will look at a method that replaces the common trend
assumption by an alternative restriction on the stability of someone’s
outcome rank over time (e.g., someone’s rank in the wage distribution
before and after introduction of the treatment) when not receiving the
treatment, which is known as the changes-in-changes approach.

Chapter 8 presents the synthetic control method, another approach that
relies on the observability of outcomes prior and after the treatment
introduction that was originally developed for case study setups with only
one treated and many nontreated units. It is based on taking the difference
between the treated unit’s outcome and a weighted average of the
nontreated units’ outcomes, which serves as a synthetic imputation of what
the treated unit’s outcome would have been without the treatment. The
importance that a nontreated unit receives in the computation of the average
depends on how similar it is to the treated unit before the treatment
introduction in terms of observed outcomes (and possibly covariates as
well). Therefore, the assumption underlying the synthetic control method is
that generating a mix of nontreated units with comparable outcomes (and
covariates) like the treated unit in the periods prior to treatment permits
assessing the effect on the treated unit after the treatment introduction.

As an example, let us consider the effect of German reunification after
the fall of the Berlin Wall on economic growth in West Germany, which
was the only European country experiencing such a reunification at that
time. The synthetic control method aims at generating a weighted average
of other European countries (such as Austria and the Netherlands) that
closely matches the economic conditions in West Germany prior to
reunification. This is for the purpose of evaluating whether the reunification
induced a differential development of economic growth between West
Germany and the weighted average of nontreated countries. We will also
discuss several modifications, including machine learning approaches and
extensions to multiple treated units.

Chapter 9 discusses so-called regression discontinuity designs, which
aim at mimicking the experimental context of a randomly assigned
treatment locally at a specific threshold of an index or running variable that



determines access to the treatment. To fix ideas, let us assume that a
university admits only applicants who earn a minimum score on an
admission test. If neither applicants nor examiners manipulate the test
scores, then students just passing (by obtaining the minimum score) are
arguably quite similar in terms of intelligence and other characteristics to
those just failing due to a slightly lower score (i.e., receiving 1 point less
than the required minimum). Locally, at the threshold of the test score, we
can therefore compare the earnings outcomes of admitted and nonadmitted
students to assess the causal effect of admittance, as the context resembles
an experiment with a comparable treated group (just attaining the threshold)
and nontreated group (just failing to attain the threshold).

The described setup corresponds to the so-called sharp regression
discontinuity design, which assumes that everyone above and no one below
the threshold receives the treatment. Furthermore, and very much in the
spirit of the instrumental variable approach mentioned previously, the
framework can also be adapted to the context of a broken experiment,
implying that not everyone admitted to a university might decide to attend
it. This entails a so-called fuzzy regression discontinuity design, which
assumes that the threshold changes treatment participation for some
subjects, but not necessarily for all of them.

A related and yet different approach is the so-called regression kink
design for assessing treatments that are continuous (i.e., can take many
values, not just 1 or 0) and change their association with the running
variable at a specific threshold of the running variable. For instance, we
might be interested in assessing the causal effect of unemployment benefits
(a treatment) on unemployment duration (an outcome). The benefits may
amount to a specific share (such as 60 percent) of the previous earnings,
which is the running variable, but they may be capped at (and therefore not
go beyond) a specific threshold of previous earnings. This entails a kinked
relation between unemployment benefits and the running variable and may
be used to assess causal effects around the threshold. Finally, we will take a
look at so-called bunching designs, which also rely on thresholds in a
running variable. But in contrast to regression continuity and kink designs,
they consider the case that subjects can manipulate or decide whether they
will be above or below the threshold: for example, a specific income tax
bracket as a function of employment. Under specific assumptions, we can



exploit this setup to estimate the size of the selection (or bunching) effect
just above or below the threshold, or to correct for nonrandomness in
treatment assignment.

Chapter 10 is concerned with the question of how stable or robust causal
effects are when specific assumptions that underlie the previously
mentioned selection-on-observables or instrumental variable framework are
not satisfied. It shows that if we drop some of or all these assumptions, we
obtain a range or set of possible causal effects rather than a single number.
Such a so-called partial identification approach might nevertheless be
interesting and sensible if the satisfaction of stronger assumptions appears
implausible in the empirical problem at hand. Rather than dropping specific
assumptions altogether, a second approach consists of assessing the
robustness of causal effects to minor or even stronger deviations from the
questionable assumptions, which serve as the default, by means of a so-
called sensitivity analysis. We will consider several causal problems for
which partial identification and sensitivity analyses can be fruitfully
applied, but the text will not exhaustively cover all possible approaches.

Chapter 11 addresses the important issue that, in a world of social
interactions and interference, an outcome of interest might be affected not
only by someone’s own treatment, but also by the treatments received by
others, such as family members, friends, or even society as a whole. For
instance, providing a student with a textbook on causal analysis might not
exclusively affect the student’s own learning process, but also spill over to
other students if the book is used by a group. Likewise, a welfare payment
to a poor household might not exclusively affect the household’s own
income, but also that of other people or the general society due to increased
spending on goods or services by the welfare-receiving household.

We will therefore consider several distinct approaches for separating the
so-called direct effects of someone’s own treatment from so-called
interference effects that come from the treatment of others: for example,
due to spillover effects or social interactions. One class of methods, for
instance, assumes that interference effects take place within, but not across
clusters like geographic regions, which is known as partial interference. As
an alternative, another class of methods based on so-called exposure
mappings assumes that anyone’s social network relevant to the transmission
of interference effects is observable and can be used for defining a tractable



number of types of interference (e.g., having no versus one or more treated
friends in a social network). We will discuss such approaches in a number
of causal contexts when invoking selection-on-observables or instrumental
variables assumptions, but without being exhaustive in the coverage of the
methods available.

Chapter 12, the final chapter, gives a brief outlook on potential future
trends in the field of causal analysis, in particular causal discovery, which
aims at learning causal relations between possibly many variables in a data-
driven way. So the best in causal analysis might yet be to come!



2
Causality and No Causality

2.1 Potential Outcomes, Causal Effects, and the Stable Unit
Treatment Value Assumption

The fundamental problem of causality is rooted in the fact that given a
specific point in time, we cannot observe the world with and without a
particular intervention whose causal effect we intend to evaluate. To
illustrate this issue with an example, let us assume that we are interested in
the effect on wages of training (such as a course in causal analysis). To
measure the wage effect for any individual who is of interest to us, such as a
training participant, we would like to compare the individual’s wage with
and without training participation. However, at any point in time, an
individual has either participated or not participated in the training, but
never both. Due to the impossibility of observing individuals at the same
time in two mutually exclusive participation states, causal effects generally
cannot be evaluated for a specific individual, an issue that Holland (1986)
calls the “fundamental problem of causal inference.”

To discuss the concept of causality and the difficulty of evaluating causal
effects more formally, we now introduce some statistical notation.
Throughout this textbook, we will use capital letters for denominating
random variables and lowercase letters to express specific values of these
variables whenever appropriate. Let us, for instance, denote by D our
intervention, which we henceforth refer to as “treatment” (inspired by



medical interventions). In our example, the treatment is an indicator for
training participation: that is, D = 1 if someone participates in the training
and D = 0 if not. Furthermore, we denote by Y the observed outcome
variable (the wage, in our example), for which we would like to know how
it is affected by D. To give a graphical illustration, figure 2.1 provides a
causal graph, which displays the causal effect we are interested in by means
of an arrow going from treatement D to outcome Y. Such graphs, and more
specifically, directed acyclic graphs (DAGs), which rule out cyclic or
simultaneous relations (like arrows going both from D to Y and Y to D), are
very popular for displaying causal structures; see, for instance, the
examples provided in Pearl (2000), Cunningham (2021), and Huntington-
Klein (2022).

Figure 2.1
The causal effect of the treatment on the outcome.

To see that the effect of D on Y cannot be observed on the individual
level, we introduce some further notation known as the potential outcome
framework, as proposed by Neyman (1923) and advocated by Rubin (1974),
Imbens and Rubin (2015), and many other contributions to causal analysis.
Let Y(1) and Y(0) denote the potential outcomes hypothetically realized if
treatment D were set to 1 and 0, respectively. In our example, Y(1) is the
potential wage under training participation and Y(0) the potential wage
under nonparticipation. Importantly, denoting the potential outcomes Y(1)
and Y(0) as a function of someone’s own treatment status D alone implicitly
imposes the assumption that someone’s potential outcomes are not affected
by the treatment status of others. This is known as the stable unit treatment
value assumption (SUTVA); see, for instance, the discussion in Rubin
(1980) and Cox (1958).

To better understand the implications of the SUTVA, let us for the
moment express the potential outcomes of an individual, indexed by i, as a
function of that individual’s own treatment state Di (where the subscript
now makes the reference to individual i more explicit), which can be either



1 or 0, and the treatments assigned to all other subjects but individual i in
the population of interest, denoted by �−i. The potential outcome under
individual i’s treatment assignment Di = di, with di being 1 or 0, and all
others’ assignments �−i = d−i, with d−i being a vector containing the
treatments of everyone else in the population, is thus given by Yi(di, d−i).
The SUTVA implies, for any individual i in the population, that

By equation (2.1), someone’s potential outcomes are not influenced by
the treatment assignments among others, �−i, but only a function of his or
her own treatment, di. We can thus refrain from using the subscripts i, −i
when defining the potential outcomes, which simplifies the notation.
However, it is important to acknowledge that ruling out any spillover or
interference effects from the treatment of others to a subject’s own outcome
might not appear plausible in all contexts. For instance, if more individuals
obtain training, then the supply or availability of a certain skill in the labor
market increases. This may negatively affect the wage of an individual
independent of her or his own training participation because the companies
can now choose among a larger pool of trained individuals. Therefore,
whether other labor market participants are trained may have an impact on
one’s own labor market outcomes. However, if the number of trained
individuals is small relative to the total demand for and supply of
individuals with that skill, then the SUTVA might at least come close to
being satisfied. The plausibility of this assumption, therefore, needs to be
assessed in the empirical context at hand. We will assume the SUTVA
throughout this book unless stated otherwise in chapter 11, which explicitly
considers causal analysis under violations of this assumption.

After having understood the implications of the SUTVA for the
definition of potential outcomes, let us now verify how the latter are
associated with the observed outcome Y: that is, the wage. Quite naturally, Y
corresponds to the potential outcome under treatment, Y(1), for individuals
actually participating in the training (D = 1), and to the potential outcome
under nontreatment, Y(0), for individuals actually not participating (D = 0).
It is impossible to observe both potential outcomes at the same time, as
individuals either participate or not, but never both at once. We can



formally express this relation between Y on the one hand and Y(1), Y(0), D
on the other hand by means of the following equation:

Equation (2.2) is equivalent to equation (2.3), in which the observed
outcome is expressed as the potential outcome without treatment, to which
Y(1) − Y (0) (i.e., the difference in the potential outcome with and without
treatment) is added in the case of actual treatment:

The difference in potential outcomes Y(1) − Y (0) is the causal effect of D
on Y of interest as graphically displayed in figure 2.1, corresponding to the
individual change in the wage due to participating versus not participating
in the training. However, as either Y(1) or Y(0) is not observed depending
on the value of D, the effect cannot be measured for any individual, which
creates the previously mentioned fundamental problem of causal inference.

Even though causal effects are fundamentally unidentifiable at an
individual level, we may under specific statistical assumptions evaluate
them on more aggregate levels: that is, based on groups of treated and
nontreated individuals. One interesting parameter in this context is the
average causal effect, also known as the average treatment effect (ATE):
that is, the average effect of D on Y in a predefined population, consisting,
for instance, of all employees in a region or country where the training is
offered. The ATE, which we henceforth denote by Δ, corresponds to the
difference in the average potential outcomes Y(1) and Y(0) for in the
population of interest. It is formally defined as

where E[…] stands for “expectation,” which is simply the average in the
population. Furthermore, we could also be interested in the ATE in a
specific subpopulation, in particular, the subpopulation of employees who
actually participated in the training(D = 1), rather than all employees. This
average treatment effect on the treated (ATET), which we henceforth denote
by ΔD=1, is formally defined as



where |D = 1 is to be read as “conditional on D = 1,” which means “only for
those who actually participated.” That is, | is to be interpreted as an if
condition such that the average effect refers only to the subpopulation
satisfying this if condition. Analogously, we can also define the average
treatment effect on the nontreated (ATENT), denoted by ΔD=0:

2.2 Treatment Selection Bias

After having defined aggregate effects like the ATE and the ATET, a natural
question is how to properly assess them. Can we simply compare the
outcomes of individuals receiving the treatment, commonly referred to as
the “treatment group,” with those not receiving the treatment, the “control
group?” In general, unfortunately, the answer is no. The reason is that the
treatment and control groups may differ in background characteristics that
affect the outcome. In this case, the differences in Y across the treatment
and control groups may not only reflect the treatment effect, but they might
also be driven by differences in the background characteristics. Let us
assume, for instance, that individuals participating in training are on
average more motivated than those who do not. If motivation affects wages,
which appears likely, then comparing the average wages of training
participants and nonparticipants will not give the causal effect of training,
but rather a mixture of the effects of training and motivation.

Indeed, we are comparing apples with oranges when basing our analysis
on treatment and control groups that are not comparable in terms of
motivation. Even though we might observe a statistical association like a
correlation between Y and D, implying that the level of Y systematically
varies with different levels of D, this does not correspond to the causal
effect of D. Figure 2.2 shows this issue by means of a causal graph, in
which U denotes motivation or other characteristics affecting both training
participation and wages, as indicated by the dotted arrows going from U to
D and Y. Using dotted (rather than solid) arrows emphasizes that such
characteristics U are frequently not observed in the data, such that their



causal effect on D and Y cannot be assessed. For this reason, we generally
cannot infer causal relations from patterns observed in data, as argued by
Haavelmo (1943), for instance.

Figure 2.2
Treatment selection bias.

For a proper evaluation of the causal effect of D on Y, the treated and
control groups must be comparable in terms of any background
characteristics U that affect Y, which is known as the ceteris paribus
condition (“everything else equal” apart from D) in econometrics and
statistics. Graphically, this implies that if U affects Y, it must not affect D,
as displayed in figure 2.3. For instance, if motivation affects wages, it must
not influence training participation, in order to satisfy the ceteris paribus
condition that motivation does not systematically differ across treatment
and control groups. Then, differences in Y across groups with D = 1 and D
= 0 can be attributed to differences in the treatment alone: that is,
correspond to the causal effect of D.



Figure 2.3
No treatment selection bias.

For a more formal discussion, let us denote by E[Y|D = 1] the average
outcome in the treatment group (recalling that |D = 1 reads as “conditional
on D = 1”) and by E[Y|D = 0] the average outcome in the control group.
Under which condition does the mean difference in the observed outcomes
across groups, E[Y|D = 1] − E[Y |D = 0], correspond to the ATE, Δ =
E[Y(1)] − E[Y (0)], the average effect of D? To answer this question, we
first note that

because for the treatment group, Y = Y (1), while for the control group, Y =
Y (0). This follows from our discussion of the association of observed and
potential outcomes in section 2.1, and in particular from equation (2.2).
Therefore,

We can now see that E[Y(1)|D = 1] −E[Y (0)|D = 0] equals Δ = E[Y(1)]
−E[Y (0)] only if the following conditions hold:

In other words, E[Y|D = 1] −E[Y |D = 0] generally corresponds to the
ATE only if (i) the average of Y(1) in the treatment group and in the total
population are the same and (ii) the average of Y(0) in the control group and



in the total population are the same. This rules out that background
characteristics U that affect the potential outcome Y(1) are on average
different across the treatment group and the total population, which also
contains the control group. It also rules out that any U affecting Y(0) is on
average different across the control group and the total population, which
also contains the treatment group. In short, the treatment and control groups
must be comparable with regard to U, at least on average, for satisfying
equation (2.7).

Conversely, if the conditions in expression (2.7) do not hold, then E[Y|D
= 1] −E[Y (1)] corresponds to a so-called treatment selection bias. This is
the error that arises when measuring E[Y(1)] based on E[Y|D = 1], and it is
due to the noncomparability in U across the treatment and control groups.
Likewise, E[Y|D = 0] − E[Y (0)] corresponds to the selection bias when
measuring E[Y(0)]. Finally, a combination of both gives the treatment
selection bias due to differences in U when aiming at assessing the ATE
based on the mean difference E[Y|D = 1] − E[Y |D = 0]. That is, from E[Y|D
= 1] ≠ E[Y (1)] and/or E[Y|D = 0] ≠ E[Y (0)], it generally follows that

It is worth noting that the size (or even the existence) of the treatment
selection bias cannot be verified in the data, as E[Y(1)] and E[Y(0)] are not
observed because either Y(1) or Y(0) is not known for any subject in the
population. Whether a statistical method properly measures a causal effect
or gives a noncausal parameter flawed by treatment selection bias is
typically unknown, as it hinges on the satisfaction of particular, generally
nonverifiable conditions, like the satisfaction of expression (2.7). In the
chapters to follow, we will consider a range of alternative methods that are
distinct in terms of the conditions they impose for identifying causal effects,
frequently referred to as identifying assumptions. As the latter are often not
verifiable (or testable) in the data, a key task in any causal analysis is to
scrutinize whether such assumptions are likely satisfied or violated in an
empirical problem at hand: for example, based on theoretical arguments or
previous empirical evidence.



3
Social Experiments and Linear Regression

3.1 Social Experiments

Experiments such as those considered in Fisher (1935) are probably the
most intuitive, and from a statistical perspective, often the most convincing
approach to causal analysis. They consist of randomly (i.e., coincidentally)
granting or denying subjects access to a treatment like a training program,
such as one based on flipping a coin. Because the members of the treatment
and control groups are exclusively chosen by luck (the result of a coin flip)
rather than based on their background characteristics, the latter are
comparable across the treatment and control groups, at least when the
number of participants in the experiment is sufficiently large. Therefore, the
causal effect of the training can be assessed by simply comparing the
outcomes (e.g., the wages) of both groups, as there are no systematic
differences in other important characteristics (such as motivation, age, etc.)
that could also have an influence on the outcome, previously denoted as U.
Graphically, random assignment of intervention D corresponds to the
framework in figure 2.3 where U does not affect D because D is exclusively
determined by the coin flip.

More formally, random assignment of D rules out that subjects with
specific, particularly high or low potential outcomes Y(1) or Y(0) (and thus
U, which is the only element affecting the outcome apart from D) are more
likely than others to either receive the treatment or not. In statistical



parlance, we say that D is statistically independent of Y(1), Y (0), as
expressed by the following independence assumption:

where ⊥ denotes statistical independence. A consequence of the potential
outcomes being independent of the treatment (i.e., comparable across
treatment and control groups) is that their means (as well as variances and
distributions in general) are comparable. Therefore, expression (2.7) in
section 2.2 is satisfied under statistical independence. This implies that by
their randomized design, experiments are (if properly conducted) not prone
to treatment selection bias, such that the average treatment effect (ATE)
corresponds to the mean difference in the outcomes of treated and
nontreated observations:

We note that the mean difference in equation (3.2) and any other
parameter discussed so far, like the ATE Δ, refers to the total population. In
practice, however, experiments (or other causal approaches) are typically
conducted in a sample that is to be randomly drawn from the population of
interest to be representative. For instance, we might randomly select 10,000
individuals in a country to participate in an experiment, with the goal that
the chosen individuals represent the country’s population well in terms of
any characteristics like education or age. As we cannot observe the average
outcomes E[Y|D = 1] or E[Y|D = 0] in the population, but rather aim at
approximating or estimating them in the sample, our statistical notation
must distinguish between the population and the sample perspective. Let us
for this reason denote by n the number of observations in the sample and by
i the index of any such observation, implying that i ∈{1, 2, …, n}. For
instance, i = 1 for the first observation and i = n for the last observation in
the sample. Furthermore, we denote by Yi and Di the outcome and treatment
of observation i in our sample.

Equation (3.2) suggests that we may estimate the ATE by the mean
differences of the treated and nontreated observations in our sample:



The summation  corresponds to adding up Y1 ·D1 + Y2 ·D2 + ⋯ +
Yn · Dn and thus yields the sum of treated outcomes in the sample, because
Yi ·Di is Yi if Di = 1 and zero if Di = 0. An alternative way of writing this
summation is , such that we only choose treated outcomes to be
added up. Furthermore, the summation  corresponds to
the number of treated observations in the sample.  therefore yields
the mean outcome among the treated in the sample, and by analogous
arguments,  gives the mean outcome among the nontreated.

Let us consider an empirical example for the estimation based on mean
differences using the statistical open-source software R, provided by R
Core Team (2015). We will analyze an experiment conducted between
November 1994 and February 1996, which randomized access to Job
Corps, a large US education program financed by the US Department of
Labor that targets disadvantaged individuals aged sixteen to twenty-four.
Schochet, Burghardt, and Glazerman (2001) and Schochet, Burghardt, and
McConnell (2008) provide detailed discussions of the experimental design
and the effects of random program assignment. These studies find that the
Job Corps program increases educational attainment, reduces criminal
activity, and increases employment and earnings, at least over some years
after the program.

In our empirical example, we aim at assessing the average treatment
effect of random program assignment on the weekly earnings in the fourth
year after the assignment. To this end, we install and load the causalweight
package for R provided by Bodory and Huber (2018) using the
install.packages and library commands. The package includes the data set
JC with 9,240 observations and 46 variables from the experimental Job
Corps study, which we load into the R workspace using the data command.
Applying the command ?JC opens the corresponding help file, with more
detailed information about the variables in the data set. We can see that
assignment is a binary indicator for random assignment to Job Corps, which
is our treatment D. earny4 measures weekly earnings in US dollars (USD)
in the fourth year, which we consider as outcome Y.



We can access these variables in the JC data by using $, which permits
calling subobjects in R objects, to define D and Y: D=JC$assignment and
Y=JC$earny4. Finally, we take the mean difference in the outcome across
treatment groups. To this end, the expression Y[D==1] selects the treated
outcomes because square brackets permit selecting observations that satisfy
a specific condition D==1; that is, that the treatment is equal to 1. Note that
we need to be sure to use the double equals sign in D==1, as we use it for
checking a condition, while single equals signs are for defining R objects
like variables. Wrapping the Y[D==1] expression with the mean command
yields the mean outcome among the treated, and proceeding analogously
with the nontreated and taking differences yield the ATE estimate
corresponding to equation (3.3): mean(Y[D==1])-mean(Y[D==0]). The
box here provides the R code for each steps.

Running this R code yields the following output:

Our ATE estimate suggests that on average, access to Job Corps
increases weekly earnings in the fourth year after assignment by roughly 16
USD, thus pointing to a positive earnings effect of the educational program.
Congratulations—we just ran our first causal analysis in R!

3.2 Effect Identification by Linear Regression

The mean difference in the outcomes of treated and nontreated individuals
provided in equation (3.2) for the population and in equation (3.3) for the
sample can also be expressed by a so-called linear regression. The latter



was first suggested by Gauss (1809) and is one of the most popular
techniques for analyzing statistical associations, be they causal or
noncausal. So, importantly, linear regression can be applied to data even if
the conditions for causal analysis like the independence assumption in
expression (3.1) are not satisfied, but in this case, the output of linear
regression will in general not yield a causal effect. However, if these
conditions are met, then linear regression provides a convenient framework
for assessing desirable statistical properties of causal analysis in empirical
data, as discussed in section 3.3, like unbiasedness, consistency, and
asymptotic normality. For this reason, we will subsequently express ATE
evaluation under a randomized treatment as a regression problem, which
requires a somewhat more formal discussion (which might be skipped by
readers already familiar with the properties of linear regression). To this
end, let us reconsider the characterization of the observed outcome in
equation (2.3) in section 2.1 and take the conditional expectation of this
expression given D in the population; that is, the average of the observed
outcome in a particular treatment group:

The second equality in equation (3.4) follows from the fact that E[D|D] =
D: that is, the average of any variable conditional on the very same variable
is the variable itself. Furthermore, equation (2.2) implies that E[Y|D = 0] =
E[Y (0)|D = 0] and E[Y|D = 1] = E[Y (1)|D = 1].

We notice that by the independence assumption in expression (3.1),
E[Y(0)] = E[Y (0)|D] = E[Y (0)|D = 0] = E[Y |D = 0] and E[Y(1)] = E[Y
(1)|D] = E[Y (1)|D = 1] = E[Y |D = 1], such that equation (3.4) becomes

Therefore, the conditional mean of outcome Y given treatment D, such as
average sales in the presence or absence of a marketing campaign, can be
expressed as a linear function of the so-called coefficients α and β. α
corresponds to the mean outcome among the nontreated E[Y|D = 0], such as
the average sales without marketing, which under the independence



assumption in expression (3.1) equals the mean potential outcome under
nontreatment E[Y(0)]. β corresponds to the mean difference of treated and
nontreated outcomes E[Y|D = 1] − E[Y |D = 0], which under equation (3.1)
equals the ATE, Δ = E[Y(1) − Y (0)]: that is, the causal effect of the
marketing campaign. Finally, α + β corresponds to the mean outcome
among the treated, E[Y|D = 1], such as the average sales when conducting
the marketing campaign, which under equation (3.1) equals E[Y(1)].

We now have a representation of the potential outcomes and the causal
effect by means of a linear regression, but it still must be demonstrated how
linear regression actually determines the values of coefficients α and β.
Readers not interested in such technical details might skip the subsequent
discussion, but it seems interesting for better understanding why and how
linear regression works in the experimental context with a binary treatment.
Let us introduce yet a further variable ε, which represents the difference
between the observed outcome Y (e.g., sales) and its respective conditional
mean in a specific treatment group (e.g., average sales among the treated),
E[Y|D]. ε is commonly referred to as an error term or residual and is
formally defined as follows:

Solving equation (3.5) for Y by rearranging terms shows that the observed
outcome can be expressed as the sum of the average outcome in a specific
treatment state and its deviation thereof, represented by the error term

Figure 3.1 illustrates this graphically by depicting parameters α and β, as
well as the error term ε for one of the many subjects in the population,
whose values of Y (on the y-axis) and D (on the x-axis) are presented by a
scatterplot of dots.



Figure 3.1
Linear regression.

To compute coefficients α and β, linear regression is based on exploiting
two specific properties of error term ε that are known as moment conditions,
as they refer to means, which are the first moments of the distribution of
some variable. The first moment condition is that the average of ε equals
zero, which is shown by taking expectations (i.e., population averages) in
equation (3.5):

We note that the second equality follows from the law of iterated
expectations, which says that the mean of a variable corresponds to the
mean of the conditional means of that variable. For instance, the average
sales in the population equal the appropriately averaged average sales under
treatment (e.g., a marketing campaign) and nontreatment. Quite intuitively,
equation (3.7) states that deviations from a variable’s mean must average to
zero.



The second moment condition is a consequence of the independence
assumption in expression (3.1), which permits replacing E[Y|D] in equation
(3.5) with functions of mean potential outcomes as provided in equation
(3.4):

where the last equality follows from the definition of the observed outcome
Y in equation (2.2) in section 2.1. As E[Y(1) −E[Y (1)]] = 0 and E[Y(0) −E[Y
(0)]] = 0, it is easy to verify that E[ε|D] = 0. This in turn implies the second
moment condition underlying linear regression:

The reason is that by the law of iterated expectations, E[D ·ε] = E[D
·E[ε|D]]. We also note that it can be shown that E[D ·ε] = E[(D −E[D]) ·ε] =
Cov(ε, D), where Cov denotes the covariance. Therefore, the independence
assumption in expression (3.1) implies that the covariance of the treatment
and the error term in the population is zero: Cov(ε, D) = 0.

In the next step, we can solve the first and second moment conditions
(equations (3.7) and (3.9)) for α and β to demonstrate how linear regression
identifies the ATE and the mean potential outcomes. By using the definition
of ε in equation (3.5), the first moment condition implies

Furthermore, the second moment condition implies

where the second equality follows from the definition of α in equation
(3.10). With a little bit of effort, we have thus proved that linear regression



identifies the ATE of a binary treatment in experiments by β, which is
computed as the ratio of the covariance (Cov) of Y and D and the variance
(Var) of D. This covariance-variance-ratio thus corresponds to E[Y|D = 1] −
E[Y |D = 0]. Finally, plugging β into equation (3.10) identifies α = E[Y|D =
0] = E[Y (0)]: that is, the mean potential outcome under nontreatment.

An alternative but related way of expressing linear regression for
identifying the coefficients α and β is to consider it as the solution to the
following optimization problem:

α* and β* represent a range of candidate values for α and β, and ultimately
those values are selected that minimize the expectation of the squared error
terms. Here, the moment conditions E[ε] = 0 and E[D · ε] = 0 arise as first-
order conditions (i.e., when taking the first derivatives of the function to be
minimized in equation (3.12) with regard to α* and β*) and picking α* and β*

such that those derivatives are zero (as implied by the minimum of the
function in equation (3.12)).

While this ends this discussion on why and how linear regression
identifies the ATE in the population under random treatment assignment, let
us make a final remark concerning the method’s name. Even though we
have considered linear regression, no linear relationship whatsoever is
actually imposed when the treatment is binary. Linearity of the outcome in
the treatment would imply the restriction that increasing the treatment by
one unit (e.g., 1 hour of training) had always the same effect on the
outcome, no matter what the initial treatment (e.g., 0 or 10 hours of
training) was. This restriction, however, is irrelevant for binary treatments
that can only take the value 1 or 0, as we currently consider. We will,
however, also consider multivalued treatments further in section 3.5.

3.3 Estimation by Linear Regression and Its Properties

So far, our discussion of the linear regression has focused on the
identification of the ATE in the population. As mentioned before, however,
a social experiment is typically based on a sample rather than the entire
population, implying that we need to estimate α and β in the data. For this



reason, we will denote the respective parameter estimates in a sample by a
“hat” symbol (ˆ) in order to distinguish them from the true parameters in the
population. As already discussed in section 3.1, let us assume that we have
a randomly drawn sample of n observations, where each observation is
indexed by i ∈{1, 2, …, n} and denote by Yi and Di the outcome and
treatment for observation i in the sample, respectively. In analogy to the
minimization problem in the population provided in equation (3.12), we
obtain an estimate of the ATE based on linear regression as the solution of
the minimization problem in the sample:

α* and β* are candidate values for the coefficient estimates  and  and
ultimately chosen such that sum of squared residuals (i.e., the sum of
squared deviations between observed outcomes and the estimated
regression line) is minimized. For this reason, linear regression is also
known as ordinary least squares (OLS). We could also minimize the mean
rather than the sum of the squared residuals in the sample—namely, 

—in order to more closely match
equation (3.12), where the mean squared error (MSE) in the population is
minimized. For the optimization problem, however, this does not make any
difference. The values α*, β* minimizing the sum in equation (3.13) will
also minimize the mean, as the mean is just the sum divided by the sample
size n.

Analogous to equation (3.10) in section 3.2 providing the population
parameter β = E[Y|D = 1] − E[Y |D = 0], the estimate  in equation (3.13) is
the sample covariance  of Yi and Di divided by the sample variance 

 of Di:



 corresponds to the mean difference in the outcomes of the treated and
nontreated groups in the sample, and is therefore numerically equivalent to
equation (3.3). And in analogy to equation (3.10), which yields the average
outcome under nontreatment, α = E[Y|D = 0], the estimate  corresponds to

To ease notation, let us henceforth denote the sample average of the
treatment as .

It is important to note that the sample-based estimates  and  may
generally differ from the true β and α in the population. The reason is that
even a randomly drawn sample may not be fully representative of the
population and the independence assumption in expression (3.1) might not
hold exactly in the sample. Even if estimates  and  might somewhat (and
hopefully not too strongly) differ from their respective true values in a
given sample, one desirable property for any statistical method is that it hits
the true values on average when applied to infinitely many randomly drawn
samples. This would, for instance, imply that if we could draw a very large
number of samples from a country’s population and run a marketing
intervention in each of these samples, the mean of the causal effects
estimated in each of the samples corresponds to the true effect in the
population. This property of “getting it right on average” is known as
unbiasedness and more formally means that the expectations of estimates 
and  correspond to the true parameters β and α, respectively:



Unbiasedness can be best described by the following (admittedly old)
joke about statisticians: A chemist, a biologist, and a statistician are out
shooting with bow and arrow on a target. The biologist shoots and misses
the target 2 meters to the left. The chemist shoots and misses 2 meters to the
right. The statistician, delighted by the average performance, yells “It’s a
hit!”

A second desirable property is consistency, implying that if one draws a
larger rather than a smaller sample, then the probability of obtaining an
estimate  that is substantially different to the true effect β, say by more
than an absolute value �, goes down. This appears attractive because it
implies that in large enough samples, the probability of obtaining an
estimate that is far from the truth is low. Formally, consistency is satisfied if

where Pr denotes probability, → reads as “converges to,” and || stands for
the absolute value. Consistency thus states that estimate  is more and more
likely to be close to the true β as the sample size becomes very large, and
ultimately collapses to β when the sample size goes to infinity. A different
but equivalent way of stating consistency is that β is the so-called
probability limit (plim) of :

Consistency holds, for instance, if  is unbiased and its variance decreases
as the sample size increases. Analogous arguments apply concerning the
consistency of .

A third desirable property is asymptotic normality. Reconsidering the
case of drawing many random samples and estimating β and α in each
sample, asymptotic normality means that the pooled estimates  and 
obtained from those samples follow a normal distribution, given that the
size of each sample is very large. The beauty of this property is that with a
sufficiently large number of observations, it enables us to well approximate
the distribution of an estimate across many samples, even if we only have a
single sample (rather than many) at hand as is usually the case in empirical
applications. Knowing the distribution of an estimate is very useful for so-
called statistical inference, considered in section 3.4. This includes judging



the error probability with which a causal effect of zero can be rejected in the
population (type I error) based on the results obtained in the sample, or
defining an interval of values likely containing the true effect.

Under the satisfaction of the independence assumption in expression
(3.1), a randomly drawn sample in which both treated and nontreated
observations are available, and a binary treatment, linear regression (or
OLS) is an unbiased, consistent, and asymptotically normal estimator.
Therefore, the OLS-based estimates  and  of the ATE and the mean
potential outcomes satisfy all three desired properties. This will be formally
shown in the subsequent discussion, which might be skipped by readers not
interested in these technical details and proofs, which may be a bit more
tedious. We also note that there are many more estimators of causal effects
that, under particular identifying assumptions, satisfy all three of the
desirable properties, or at least a subset (e.g., only consistency and
asymptotic normality) of them. We will get to know a range of estimation
approaches in the chapters to follow and sometimes make comments about
their properties, such as unbiasedness, but without going into as many
technical details as we do for linear regression.

To formally show the unbiasedness of ATE estimate , let us reconsider
the definition of  in equation (3.14) and replace Yi by the definition of the
outcome provided in equation (3.6), which yields

To see this result, we note that the second line in equation (3.19) follows
from the fact that α has a covariance of zero because it is a constant, and the



covariance of Di with itself is equal to the variance. The third line follows
from  and shows that ATE estimate  corresponds to the true ATE β
plus the sample covariance of the treatment and the residual divided by the
sample variance of the treatment. The fourth line provides the formulas of
these covariance and variance terms. The fifth line is obtained by the fact
that  and by 
canceling out in the numerator and denominator of the second expression
on the right side.

Taking expectations of the terms in equation (3.19) (i.e., averaging over
many samples) yields

where the second equality follows from the law of iterated expectations.
Unbiasedness holds because the errors have an expectation (or mean) of
zero in either treatment group: E[εi|Di] = 0.

To show the unbiasedness of , we take expectations in equation (3.15)
to obtain

see the definition of α in equation (3.10). We also note that the third line
follows from the fact that E[  ] = β, which has been shown in equation
(3.20), and  as well as . That is, the
sum of n identical averages is simply n times the average.



To formally show the consistency of , we reconsider the third line of
equation (3.19) and verify to which expressions the parameters converge as
the sample size goes to infinity, by using an application of the plim operator
previously seen in equation (3.18):

where the second equality follows from the fact that β is a constant (namely,
the ATE in the population), and covariances and variances in samples
converge to the respective covariances and variances in the population by
the so-called weak law of large numbers. The third equality follows from
Cov(ε, D) = 0; see the discussion just after equation (3.8) in section 3.2,
such that consistency holds. To show the consistency of , we consider the
probability limits of equation (3.15) to obtain

where the last equality follows from the definition of α in equation (3.10).
To formally show the asymptotic normality of , we reconsider the fifth

line of equation (3.19) and bring β to the left side:

The second line follows from multiplying the numerator and denominator
of the right expression by , the third from multiplying by  and the fact
that . Based on this expression, asymptotic normality can be
shown by the central limit theorem, a fundamental and very useful law in



statistics going back to De Moivre (1738), Lyapunov (1901), Lindeberg
(1922), Lévy (1937), and others.

The central limit theorem implies that as the sample size n increases, the
sum of a randomly sampled, zero mean variable converges to a normal
distribution with a zero mean and a variance that corresponds to the
variance of that variable times the sample size. More formally, it holds for
any randomly sampled variable, henceforth denoted by W, that has a mean
of zero (E[W] = 0) and a bounded variance, that

where → d reads as “converges in distribution to.” Furthermore, N stands
for the normal distribution, with the first argument being the mean (E[Wi] =
0) and the second the variance, with  for a variable with zero
mean. The second line in equation (3.25) follows by multiplying by  and
noting that this fraction enters the variance formula in squared form, , such
that  becomes Var(Wi).

We now apply the central limit theorem by defining Wi in expression
(3.25) to be the numerator of equation (3.24), . The latter
expression is zero in expectation (i.e., ) because E[εi|Di] =
0 and the law of iterated expectations, as already discussed in the context of
equation (3.20). By the central limit theorem, this expression converges in
distribution to a normal distribution:

To see this result, we note that

However, to obtain the asymptotic distribution of equation (3.24), we
need to also consider the probability limit of the denominator 



 in equation (3.24), which is Var(D). By a statistical rule
about the convergence of random variables called Slutsky’s theorem (see
Slutsky (1925)), it holds that  because E[Wi] = 0 and 

. Therefore,

We have demonstrated that  times the difference between the estimated
and the true ATE converges to a normal distribution with a zero mean and a
specific variance. This in turn implies that the difference between the
estimate  and the true effect β converges to zero, with a speed or
convergence rate of  as the sample size n increases. Put differently, the
estimate  converges to the true ATE β with a convergence rate of . This
provides an idea of how fast the discrepancy between the estimated and true
effects decays as the sample size gets larger. For instance, if the sample size
is quadrupled, then the discrepancy decreases by : that is, by half.
This behavior is known as -consistency and corresponds to the fastest
convergence rate that any estimator of causal effects can possibly attain. We
will see many estimation approaches that are -consistent in the chapters
to follow, however, without going into the technical details again.

In the next step, we divide expression (3.28) by  and add the true
effect β to obtain

This ultimately shows that the estimate  converges to a normal distribution
whose mean is the true effect β and whose variance, denoted by Var(  ), is

By showing asymptotic normality, we also obtained an expression of the
estimator’s variance as a by-product, which will turn out to be useful for



characterizing the uncertainty with which we estimate a causal effect, as
discussed further next.

Equation (3.30) corresponds to the so-called heteroscedasticity-robust
variance formula, going back to contributions by Eicker (1967), Huber
(1967), and White (1980). Robustness to heteroscedasticity allows the
variance of the error term ε (i.e., the expected squared deviation of an
outcome from its conditional mean given the treatment) to vary across
treatment states. This appears to be a plausible scenario in many empirical
contexts. Considering, for instance, the effect of training on wages, it may
well be the case that the wages among the nontrained have a different
variance than the wages among the trained, implying that the training
changes the dispersion of wages (rather than their average alone).

We note that if we do not allow for heteroscedasticity (i.e., varying
variances of ε across D), then the variance of ε is restricted to be the same
under either treatment state, a scenario called homoscedasticity. In this case,
equation (3.30) for the variance of  simplifies to

because E[ε2], the variance of ε, does not depend on D. In general, there
appears to be no good argument for assuming homoscedasticity in empirical
applications, as it imposes the restriction that the treatment does not affect
the dispersion of the outcome around its treatment-specific mean. Even
though the homoscedasticity-based variance formula in equation (3.31) is
frequently introduced first in statistics classes and might therefore be
perceived as the default option, it is actually the heteroscedasticity-robust
variance formula in equation (3.30) that is more universal because it does a
priori not restrict the treatment effect to not concern the variance of the
outcome. For this reason, relying on equation (3.30) rather than equation
(3.31) when assessing the variance of ATE estimation appears more
appropriate from a practical perspective.

To show the asymptotic normality of , we could follow an analogous
strategy as for . We will, however, consider a somewhat less tedious
approach, which is based on the fact that α = E[Y|D = 0]. To this end, we



apply the insights of the central theorem in equation (3.25) to the subsample
of nontreated observations only and define Wi = Yi − α. The latter satisfies
E[Yi − α|Di = 0] = 0 and thus has an expectation of zero under nontreatment.
Furthermore, let us denote by n0 the sample size of nontreated observations.
Applying the central limit theorem gives

It is easy to see that 
because  is the average outcome among the nontreated in the
sample. By rearranging terms in an analogous way as for , we can
therefore show that  converges to a normal distribution with mean α and a
variance of :

After showing specific statistical properties and deriving the variance of our
estimates, we conclude this section by introducing a measure for the overall
accuracy or error committed by a method, which depends on both its
variance (i.e., the uncertainty of estimation across different samples) and
the bias (i.e., the average error across samples). We consider the mean
squared error (MSE)—that is, the average of the squared difference
between the estimate  and the true effect β when applying linear regression
to infinitely many randomly drawn samples, which is formally defined as
follows:

where the second equality follows from subtracting and adding E[  ].



Equation (3.34) demonstrates that the MSE can be decomposed into an
estimate’s variance, which corresponds to  for the OLS estimate
, and its squared bias, which in our context of social experiments equals

zero, because  is an unbiased estimate, as formally shown in equation
(3.20). However, there also are estimators for which unbiasedness does not
hold, at least not in small samples, but only when the sample size becomes
very (infinitely) large. For such cases, the MSE is a very useful concept for
considering trade-offs between the influence of the variance and the bias on
the expected overall error (characterized by the discrepancy between the
estimate and the true effect). As we will discuss later in this chapter, some
methods can be tweaked in a way that the bias goes up while the variance
goes down or vice versa, and the question then is how this affects the
overall MSE, which we would like to be as small as possible to minimize
the estimation error.

3.4 Variance Estimation, Inference, and Goodness of Fit

In section 3.3 we got familiar with the normal distributions and variances of
the coefficient estimates  and  in large samples. Assessing the variance is
important because even if the previously discussed properties of
unbiasedness and consistency hold, the estimate of the ATE in our sample
might differ from the true ATE in the population due to its variance across
samples. As briefly mentioned before, knowing the variance and the
distribution is useful for statistical inference that aims at quantifying the
precision or (when phrasing it in a negative way) the uncertainty with
which we can estimate the true ATE in our sample. This permits, for
instance, answering the following two interesting questions: With which
error probability can we rule out that the ATE is equal to zero (or some
other value we are interested in) in the population, given the ATE estimate
in our sample? What is the range or interval of values that likely includes
the ATE in the population, given the findings in our sample?

Focusing on the  estimate in the subsequent discussion, we would
ideally directly exploit the variance formula provided in equation (3.30)
from section 3.3 to evaluate the uncertainty of the estimate based on its
distribution provided in expression (3.29). Unfortunately, this is infeasible,
as equation (3.30) contains parameters that refer to the population and are



therefore not directly observed in our sample. This concerns, for instance,
E[D], the mean (or share) of treatment in the population, and ε, the true
error term in the population. Even if we do not know such population
parameters, however, we may estimate them in the sample (which is similar
in spirit to estimating the true β by  in the data) to ultimately obtain an
estimate of the variance in equation (3.30).

To estimate the variance, we denote by  the estimate of the true error
term εi for observation i, also known as residual. In analogy to the definition
of εi in equation (3.5) from section 3.2 based on linear regression in the
population,  is obtained from linear regression in the sample and
corresponds to the difference between observation i’s outcome and the
conditional sample average of the outcome given the treatment. The
conditional sample average is also known as prediction and denoted by
Ê[Y|Di], as it is an estimate of the conditional mean of E[Y|D = Di] in the
population. Formally, the residual thus corresponds to

In the next step, we may use  as an estimate of the unknown εi to obtain a
consistent estimator of Var(  ), the true asymptotic variance of  given in
equation (3.30). Formally, the variance estimator, henceforth denoted by 

, corresponds to

where the population mean E[D] has been replaced by the sample mean .
We are now ready for diving into statistical inference. The first concept

that we will consider is hypothesis testing, which aims at assessing whether
the true ATE in the population is likely different, smaller, or larger than a
specific value (e.g., zero), given the estimate and its variance obtained in
the sample. To formalize the idea of hypothesis testing, let us reconsider the
asymptotically normal distribution of  in expression (3.29) of the previous
section:  → dN(β, Var(  )), with . We normalize this
distribution such that it turns into a standard normal distribution that has a



zero mean and a variance of 1. To this end, we subtract β from N(β, Var(  ))
and also divide by Var(  ), which yields N(0, 1). Importantly, and similar to
equations containing equals signs, the subtraction and division also needs to
be conducted on any expression to the left of the convergence in
distribution sign → d.

Furthermore, we need to pay attention to the fact that division by any
number outside a variance formula correspond to divisions by the square of
that number within a variance formula. Put differently, dividing by a
positive number in a variance formula corresponds to dividing by its square
root outside the variance. For this reason, any expression to the left of → d

is to be divided by  rather than Var(  ) when normalizing the
distribution to have a variance of 1. Finally, we note that the square root of
a variance is called a standard deviation, which we henceforth denote by 

. Putting all these arguments together, we obtain the
following result:

with

This implies that in large enough samples, the z-statistic provided in the
second line of expression (3.37), which consists of the true ATE β and the
standard deviation sd(  ), closely follows a standard normal distribution.
(As a side remark, if the error term ε is normally distributed, which is a
strong assumption, this even holds in small samples.) Of course, we do not
know what the true ATE is (otherwise, we would not bother to estimate it),
but this result can be used for hypothesis testing—that is, checking the
plausibility of hypothesized (i.e., hypothetically assumed) values of β. For
instance, our default or null hypothesis (denoted by H0) might be that on
average, the treatment has no effect at all, which implies that our alternative



hypothesis (denoted by H1) states the opposite—namely, that the ATE is
different to zero. Formally,

If the null hypothesis H0 stating that β = 0 were true, then the z-statistic 
would follow a standard normal distribution (across many different,
randomly drawn samples), and in addition simplify to  because β = 0.
This permits assessing how likely it is that the ATE in the population is
different from zero, given the value of  in the sample, which measures
the size of the estimated ATE  in terms of (or normalized by) the standard
deviation sd(  ) as unit of estimation uncertainty.

To highlight this with a numerical example, let us assume that the ATE is
truly zero in the population, such that the null hypothesis H0: β = 0 is
satisfied. Under a standard normal distribution, the probability of obtaining
a value of  that is larger than 1.96 in a sample is just 2.5 percent.
Likewise, the probability of obtaining a value smaller than −1.96 is also just
2.5 percent. Put differently, if the true ATE in the population is zero, then
the probability of observing a value of  in a sample that is rather
extreme (i.e., more positive than 1.96 or more negative than −1.96), is just 5
percent, as graphically displayed in figure 3.2. That is, if we could draw
many samples, we would observe such extreme estimates only in 5 percent
of the samples given the satisfaction of H0.



Figure 3.2
Standard normal distribution.

Put in yet another way, the error probability of claiming that a (rather
extreme) sample statistic  (where || stands for the absolute value)
points to a nonzero effect is smaller than 5 percent. We thus reject H0 and
accept H1 with an error probability below 5 percent. This is the case simply
because the probability of such an extreme statistic is less than 5 percent
given the satisfaction of H0. We can therefore decide to maintain or reject
H0 based on this error probability of incorrectly rejecting H0: β = 0 or
equivalently, incorrectly accepting H1: β ≠ 0, the type I error. The lower this
error probability is, the more confident we are in rejecting H0. One
conventionally even predefines a maximum admissible error probability for
rejecting H0, such as 5 percent.

However, one issue we face with this approach to hypothesis testing is
that the asymptotic standard deviation sd(  ) provided in equation (3.38),
which enters the denominator in expression (3.37), is typically unknown, as
it, just like the asymptotic variance in equation (3.30), relies on population
parameters, such as E[D] and ε. For this reason, we replace sd(  ) with an
estimate obtained in the sample—namely, the square root of the estimated
variance provided in equation (3.36). This estimate of the standard



deviation is commonly referred to as standard error, henceforth denoted as
se, and formally defined as

Replacing sd(  ) in expression (3.37) by se(  ) yields the t-statistic, .
It is worth mentioning that the latter does not follow a standard normal
distribution in smaller samples, but rather a t-distribution. However, a t-
distribution converges to a normal distribution as the sample size increases.
For a sample of roughly 120 observations, a t-distribution is practically
indistinguishable from a normal one, at least if only a few parameters are to
be estimated as our two,  and , which imply in statistical parlance a large
number of degrees of freedom. Furthermore, we also note that the standard
error converges to the true standard deviation as the sample size increases.

All of this implies that our t-statistic also converges to a standard normal
distribution as the sample size increases:

similar to the z-statistic in expression (3.37) with a known standard
deviation. In large enough samples (with, say, 120 observations or more),
we can thus compute the type I error probability associated with the ATE
estimate  in our sample as the probability of values that are as large or
even more extreme (i.e., further away from zero) than , which simplifies
to  under the null hypothesis that β = 0. This error probability of
incorrectly rejecting the null hypothesis based on the estimate in our sample
is known as the p-value and formally defined as follows:

where A denotes a random variable following a t-distribution (which, as we
know by now, converges to a standard normal distribution).



Our considerations about hypothesis testing suggest the following
procedure for maintaining or rejecting the null hypothesis in two-sided
hypothesis tests, which aim to see whether β likely differs from some
specific value (e.g., zero) given the estimate  in the sample:

1. Define the null and alternative hypotheses H0 and H1. In causal analysis,
we are typically interested in testing the presence versus absence of an
ATE, implying that hypotheses are defined as provided in expression
(3.39). But we could also test whether the ATE is likely different from
some other value, such as 1, such that H0: β = 1,  H1: β ≠ 1, and the
corresponding t-statistic is .

2. Define the significance level denoted by α—that is, the maximally
accepted type I error probability of incorrectly rejecting H0 and accepting
H1. α = 0.05 implies that the error probability must not exceed 5 percent,
but other conventional levels of significance are 0.01 (1 percent) or 0.1
(10 percent).

3. Compute the critical value, denoted as c, which is the value or quantile in
the standard normal or t-distribution that corresponds to α. If, for
instance, α = 0.05, then c = 1.96 because the probabilities of values
larger than 1.96 and smaller than −1.96 add up to 5 percent in the
standard normal distribution–that is, under the satisfaction of H0.

4. Verify if , or equivalently, if the p-value is less than or equal to α.
If the absolute value of the t-statistic is greater than or equal to the
critical value, then one rejects H0 and accepts H1 because the error
probability of rejection is less than or exactly α. In this case,  is said to
be statistically significantly different from the β hypothesized under H0 at
the α level of significance. If the absolute value of the t-statistic is less
than the critical value, one keeps H0 and does not accept H1 because the
error probability of rejection is greater than α. In this case,  is said to be
statistically insignificantly different from the β hypothesized under H0.
Alternatively, the p-value directly gives the type I error probability
related to the effect estimate in the sample at hand, and one rejects H0 if
the p-value is less than or equal to the maximally admitted type I error
probability α, but keeps H0 if the p-value exceeds α.



It is important to bear in mind that such hypothesis testing can only reject
the validity of a null hypothesis, but never confirm it. This implies that the
nonrejection of a null hypothesis does not automatically imply that it is
correct, but simply that we cannot rule out that it is correct given our data.

Besides two-sided hypothesis tests, we may also be interested in one-
sided hypothesis tests, such as whether the ATE found in the sample is
statistically significantly larger (rather than just different) than zero or any
other value of interest. In this case, the null hypothesis to be tested is that
the effect is either zero or less than zero, while the alternative hypothesis is
that the effect is greater than zero:

Accordingly, we modify the p-value to suit one-sided hypothesis testing. It
now corresponds to the probability that a random variable A following a t-
distribution has a value that is equal to or larger than the t-statistic under the
satisfaction of H0:

The condition for a rejection of the null is —that is, that the t-statistic
is greater than or equal to a specific critical value c suitable for one-sided
tests, such as c = 1.64, for a significance level of α = 0.05. An equivalent
condition is that the p-value in equation (3.44) is at most as large as α.

Likewise, one could be interested in whether the effect estimated in the
sample is statistically significantly smaller than zero or any other value of
interest. In this case, the null hypothesis to be tested is that the effect is
either zero or greater than zero, while the alternative hypothesis is that the
effect is less than zero:

The p-value then corresponds to the probability that the random variable A
has a value that is equal to or smaller than the t-statistic under the
satisfaction of H0:



The condition for a rejection of the null is now —for instance, c =
−1.64 for α = 0.05—or equivalently, that the p-value in equation (3.46) is at
most as large as α. In the remainder of this book, however, we will stick to
two-sided tests of zero versus nonzero causal effects.

A further concept of inference that is related to hypothesis testing and
the p-value is the confidence interval. It provides a range or interval of ATE
values such that the true ATE β is included with probability 1 −α based on
the estimated ATE  and the standard error se(  ) obtained in the sample. To
be concise, the confidence interval is constructed in such a way that in the
hypothetical case that we could draw many samples and construct
confidence intervals in all those samples, a share of 1 − α confidence
intervals would include the true β. For α = 0.05, for instance, this would be
the case in 95 percent of samples, such as 1 − 0.05 = 0.95. To formally
discuss the construction of a confidence interval, let us denote by β and β its
lower and upper bound, respectively—that is, the minimum and maximum
values in the interval (e.g., 10 and 20). We can compute these lower and
upper bounds by either subtracting from or adding to the estimated ATE 
the product of the standard error se(  ) and the critical value c of a two-
sided hypothesis test. More formally, the confidence interval, which we
denote by CI, corresponds to

For instance, when setting α = 0.05, it follows that c = 1.96, as this
choice results in a confidence interval that has a coverage rate of 95 percent
—that is, it includes the true β with 95 percent probability across many
samples. Confidence intervals therefore indeed provide us with some
confidence about the range of values that the true effect in the population
could likely take. It probably does not seem too surprising that whenever an
estimate  is judged to be not statistically significantly different from zero
by a two-sided hypothesis test, then the corresponding confidence interval
(based on the same α as the test) includes the zero. And analogously,



whenever the estimate is statistically significantly different from zero, the
corresponding confidence interval does not include the zero, such that the
upper and lower bounds are either both positive or both negative.

Before concluding our discussion on statistical inference, we will look at
an alternative and increasingly popular method in statistics for computing
confidence intervals and p-values, which does not rely on the formula for
computing the standard error provided in equation (3.40): bootstrapping, as
suggested by Efron (1979). It is based on repeatedly generating so-called
bootstrap samples of the original sample size n, where each sample is
generated by randomly drawing n observations from the original data with
replacement. The latter implies that the same subject, in principle, can be
drawn several times.

On average, the bootstrap samples match the original data, but they
differ from the data and one another, because in any bootstrap sample, some
subjects may randomly appear several times or not at all. This mimics the
situation that the original data are a random sample from the population and
a newly drawn sample might differ from the first one. Therefore, the idea of
bootstrapping is to reestimate the ATE in each bootstrap sample, as
illustrated in figure 3.3 (for just three bootstrap samples), to obtain the
standard error as the standard deviation of the ATE estimates across all
bootstrap samples. This quite cleverly approximates the approach of
randomly drawing many samples from the population and considering the
standard deviation of the ATE estimates across all samples, which is
practically infeasible because we have usually only one sample at hand.



Figure 3.3
Bootstrapping.

To discuss the bootstrap more formally, let us denote by B the number of
bootstrap samples that we randomly draw from the original data, which
should ideally be large—say, not smaller than 999. Furthermore, b is the
index of a specific bootstrap sample such that b ∈{1, 2, …, B}, while b

denotes the ATE estimate in the bootstrap sample b. Then, the standard
error can be computed by

which is simply the standard deviation of all ATE estimates obtained in the
various bootstrap samples. We may now use this bootstrap-based standard
error for computing the t-statistic in expression (3.41) and proceeding with
statistical inference as previously discussed.

However, there is a further bootstrap approach for directly computing the
p-value without even using the t-statistic. Taking the two-sided hypothesis
test as an example, it consists of verifying how extreme the ATE estimate 
in the original data is relative to the distribution of the bootstrap-based
ATEs b given the satisfaction of the null hypothesis. This can be assessed
by counting how often the absolute value of the difference b −  is larger
than the absolute value of :



where I{| b −  | > |  |} denotes an indicator function that is equal to 1
whenever | b −  | > |  | holds and zero whenever | b −  | is not larger than |
|.

To understand the intuition of this approach, it is important to see that
the so-called recentered bootstrap-based ATE b −  has a mean of zero due
to the subtraction of , as the bootstrap ATEs must on average correspond to
the ATE in the original data from which the bootstrap samples were drawn.
For this reason, the distribution of b −  mimics the distribution of the true
ATE under the null hypothesis when there is no effect. Therefore, we can
compute the p-value by verifying how often the absolute value of b −
exceeds the absolute value of . If this is rarely the case, such that  appears
rather extreme when comparing it with the distribution of the recentered
bootstrap-based effects, which mimics the distribution under the null
hypothesis, then the latter is rejected. As a final remark on the bootstrap,
using the absolute value for computing p-values for two-sided tests is only
appropriate for parameters with symmetric distributions (such as the normal
or t-distribution) like , but the method can be easily adjusted to also yield
the p-value for parameters following a nonsymmetric distribution like an F-
statistic.

It is worth pointing out that there are further variants of bootstrapping
than the one considered here, such as the wild bootstrap suggested by Wu
(1986). Rather than repeatedly drawing observations in terms of their
outcome and treatment values, the wild bootstrap is based on first
estimating the treatment effect in the total sample and then repeatedly
drawing functions of the residuals  to generate the bootstrap samples.
More thorough discussions of alternative bootstrap methods are provided in
MacKinnon (2006) and Horowitz (2019).

In this section and the previous section, we have discussed the estimation
of the magnitude and variance of the ATE and how to use these statistics for
statistical inference like the construction of hypothesis tests and confidence
intervals. However, a further interesting parameter, on top of the effect size
and its statistical significance, is the relative importance of the treatment in
explaining the outcome in the sample when compared to the residuals,



which reflect the effects of any other characteristics on the outcome. This
so-called goodness of fit can be judged by the proportion of the sample
variation in the outcome Y (e.g., the variation in wages), which is explained
by the sample variation in D, a statistic known as R squared (R2). To obtain
R2, let us rearrange equation (3.35) by solving it for the outcome to obtain

which demonstrates that outcome Yi for some observation i in the sample
can be decomposed into two components. The first component Ê[Yi|Di] is
the conditional sample average of the outcome, given the treatment of
observation i—that is, the estimated part of the outcome that is explained by
the treatment, which is also known as prediction. The second component 
corresponds to the residual—that is, the estimated part of the outcome
explained by other, possibly unobserved characteristics.

It can be shown that the variance of Yi simply corresponds to the sum of
the variances of these two components (because the covariance between εi

and Di—and thus, Ê[Yi|Di]—is zero). Formally,

Dividing by Var(Yi) in equation (3.51) yields

That is, the variances of the parts of the outcome that are explained by the
treatment and the residuals, respectively, sum to 1 (i.e., 100 percent of the
variance of Yi). Therefore,  corresponds to the share in the
variation of Yi that is caused by the treatment (i.e., R2). R2 close to 1 means
that almost 100 percent of the outcome variation is caused by the treatment,
such that other characteristics play a minor role. R2 close to zero (or 0
percent) implies that the treatment is responsible for little variation in the
outcome relative to other characteristics captured by the residuals. It needs
to be emphasized that R2 is conceptually different from the magnitude of the
ATE. For instance, a treatment like training might have a sizeable ATE on



an outcome like wages, but still explain only little of the variation in wages
relative to other characteristics like education, labor market experience, and
personality traits.

After discussing effect and variance estimation, statistical inference, and
R2 in the context of linear regression, let us now consider an application in
R. To this end, we reconsider our empirical example based on the Job Corps
experimental study introduced at the end of section 3.1 and assess the ATE
of random assignment on weekly earnings in the fourth year based on linear
regression. Assuming that all packages have been previously installed, we
load the causalweight, lmtest (provided by Zeileis and Hothorn (2002)), and
sandwich (provided by Zeileis, Köll, and Graham (2020)) packages using
the library command. The latter two packages permit computing
heteroscedasticity-robust standard errors in regressions based on the
variance formula in equation (3.30).

Next, we load the Job Corps data using data(JC) into the R workspace
and define the treatment D and outcome Y in the same way as in section
3.1: D=JC$assignment and Y=JC$earny4. Then, we run a regression of Y
on D using the lm command (where lm stands for linear model), which has
a fairly simple syntax that only requires typing in the outcome and
treatment variables, separated by ∼ (tilde): ols =lm(Y ∼ D). We store the
output of the regression in a newly created R object named ols. Finally, we
wrap the latter with the coeftest command to display the regression output
and also include vcov=vcovHC as the second argument in the command to
obtain heteroscedasticity-robust standard errors, t-statistics, and p-values.
The box here provides the R code for each of the steps.

This yields the following output:



The first column (Estimate) yields the coefficient estimates. The first
row (Intercept), which is an alternative denomination for the constant,
corresponds to , the mean outcome among the nontreated, which amounts
to almost 198 USD per week in the fourth year. The second row (D)
provides the coefficient on the treatment, , which corresponds to the
estimated ATE of the program assignment. It amounts to roughly 16 USD
and is numerically equivalent to the mean difference previously computed
at the end of section 3.1. However, the regression output provides more
information than the mean differences. The second column (Std. Error)
yields the heteroscedasticity-robust standard errors of the coefficient
estimates—see equation (3.40) for that of .

The third column (t value) provides the t-statistics (see expression
(3.41)), under the null hypothesis that the coefficients equal zero. Therefore,
the respective t-statistic corresponds to the ratio of the respective coefficient
to its standard error. The fourth column (Pr( > |t|)) contains the
corresponding p-values for two-sided hypothesis tests, again under the null
hypothesis that the coefficients equal zero. The p-value of  is 8.18e − 05 =
0.0000818, and thus very close to zero. We can safely reject the null
hypothesis that Job Corps assignment has an average effect of zero at any
conventional level of statistical significance. This is also indicated by the
three stars ***, implying statistical significance at the 0.001 (or 0.1 percent)
level according to the significance codes (Signif. codes). The estimate of 
is highly statistically significantly different from zero, too, with its p-value
being very close to zero.

The standard errors, t-statistics, and p-values in the previous R exercise
are based on the asymptotic variance formula provided in equation (3.30).
Let us now alternatively estimate the standard errors by bootstrapping, as
considered in equation (3.48), even though this is admittedly somewhat
more involved in terms of coding. To this end, we use the function
command to specify a bootstrap function named bs for drawing bootstrap



samples and estimating the coefficients in those samples. The bs function
contains two input arguments provided in round brackets after the function
command—namely, the data used in the procedure and the indices of the
observations randomly sampled (with replacement) from the data to be part
of a specific bootstrap sample. In curly brackets follow the commands to be
executed by the bs command. First, we define the data set to be considered
as observations (or rows) that have been randomly drawn from the data
with replacement according to the R object indices, by using the square
brackets: dat=data[indices, ]. Setting the first argument in the brackets to
indices only selects the rows provided in indices, which contains randomly
chosen numbers between 1 and the number of observations, such that
observations from the original data are picked at random. We note that this
random number selection is conducted by the boot command described
next, which therefore determines the observations in the object indices. The
second argument in data[indices, ], after the comma refers to the columns
of the data and is left blank, implying that all columns (or variables) should
be sampled for the chosen observations.

In the next step, we apply lm(dat) to run a linear regression based on the
bootstrap data dat, where the first column in the data is automatically
considered as the outcome variable and the remaining ones as regressors.
Furthermore, appending $coef to lm(dat) allows us to exclusively select the
coefficients of that regression, which are the parameters we would like to
collect from each bootstrap sample. (More generally, the $ operator permits
retrieving subobjects in R objects.) Finally, we store the coefficient
estimates in an R object named coefficients and use the return command to
provide this object as the output of our bs function. The box here provides
the R code for each step in the bs function.

We now apply our bootstrap function for linear regression to the Job
Corps sample, and to this end also load the boot package developed by



Canty and Ripley (2021) using the library command. To prepare the data,
we use the data.frame command to append Y and D columnwise to form a
data matrix, which we name bootdata. For running the bootstrap
estimations, we apply the boot command, which consists of three
arguments: the data to be analyzed (in our case bootdata), the statistic to be
computed in each bootstrap sample as defined in our bs function, and R for
the number of bootstrap replications, which we set to 1999. We store the
output in an R object named results and call the latter to investigate the
estimates; see the box here for the R code of the various steps.

This yields the following output:

While the first column of the output (original) contains the coefficient
estimates  and  in the original data, the third column (std. error) contains
the respective standard errors based on the coefficients’ distribution across
the 1999 bootstrap samples. They are in fact very similar to the standard
errors obtained from the asymptotic variance formula in the previous R
example. We also note that the standard errors can differ somewhat each
time we run the boot command, as bootstrap samples randomly differ in
their included observations. Setting a so-called seed prior to bootstrapping
permits replicating the definition of the bootstrap samples, and thus of the
results. For instance, running the command set.seed(1) prior to
boot(data=bootdata, statistic=bs, R=1999) always results in standard
errors of 3.013 and 3.955.

To compute the p-value for the ATE estimate, we first retrieve the
second coefficient from the bootstrap output, which corresponds to , by



using results$t0[2], as well as the distribution of the coefficient across all
bootstrap samples by using results$t[,2]. Wrapping the latter by the sd
function for computing standard deviations yields the bootstrap standard
error se(  ), as provided in equation (3.48). We then compute the t-statistic
based on expression (3.41) and store it in an R object called tstat. Finally,
we use the abs command for computing the absolute value of the t-statistic,
and the pnorm command to compute the p-value based on equation (3.42)
when assuming a standard normal distribution of the t-statistic, which is
justified by our sufficiently large sample and the result in expression (3.41).
The R code for these steps is provided in the box shown here.

This yields the following output:

The bootstrap approach replicates the finding of the previous R example
—namely, that the ATE is highly statistically significant, as the bootstrap-
based p-value is very close to zero, amounting to only 4.914718e − 05 =
0.00004914718. It is thus considerably lower than any conventional level of
statistical significance for the maximum error probability when rejecting the
null hypothesis of a zero ATE, like 0.1, 0.05, or 0.01.

3.5 Extensions to Multiple or Continuous Treatments

The discussion in the previous sections has focused on a binary treatment
that only takes the value 1 or 0. However, there are many empirical
questions where the interest lies in the effects of several, potentially
competing treatments. For this reason, we will subsequently adapt our
causal analysis to such frameworks with multivalued treatments that are
discrete in the sense that they can take only a limited number of different
values. More formally, we consider a treatment that can take values D ∈{0,



1, 2, …, J}, where J denotes the number of treatments, in addition to no
treatment, which is coded as zero (D = 0). This may either cover the case of
an ordered amount of a specific treatment, such as 1 =1 week of training
and 2 =2 weeks of training, or of multiple unordered treatments, where a
higher treatment value is not necessarily more treatments but just a different
treatment, such as 1 =IT course and 2 =sales training. If nontreatment and
all the various treatments 1, …, J are successfully randomized in a social
experiment, the independence assumption introduced in expression (3.1)
from section 3.1 can be adapted to hold for any treatment value:

We may analyze the ATEs of each nonzero treatment based on linear
regression by including binary variables, also called “dummies” or dummy
variables, for all nonzero treatment values. Formally, we denote by D1 =
I{D = 1}, D2 = I{D = 2}, …, DJ = I{D = J} the binary variables, where
I{A} is the indicator function, which is equal to 1 if event A (in our case a
particular treatment value) occurs and 0 otherwise. This implies the
following regression model in the population, where the coefficients β1, β2,
…, βJ correspond to the ATEs of the various treatments when compared to
no treatment—that is, E[Y(1) − Y (0)], E[Y(2) − Y (0)], …, E[Y (J) − Y (0)]:

Similar to the discussion in section 3.2, it is important to note that the linear
regression model in equation (3.54), which we may estimate in the data to
obtain ATE estimates and conduct statistical inference, does not impose any
linear relationship between Y and D. The reason is that the treatment values
are flexibly coded by means of multiple binary variables, which entails
pairwise comparisons of the average outcomes between any group with a
nonzero treatment and the nontreated control group.

Next, we consider a continuously (rather than discretely) distributed
treatment D, which may take even infinitely many values that respect
cardinality. The latter implies that a higher treatment value actually means



more, like expenditures on employee training measured in a currency like
USD or CHF. We therefore adapt the independence assumption in equation
(3.53) to hold for any values the continuous treatment D can possibly take:

One way to analyze a continuous treatment is to discretize it by generating
binary indicators for specific brackets of values, which then entails the
same regression model as in equation (3.54). For instance, defining D1 =
I{D ≤ 1000}, D2 = I{1000 < D ≤ 2000},…permits analyzing the ATEs of
various expenditure brackets in steps of 1,000 CHF, thus providing insights
into the average effect of any expenditure bracket. However, this approach
cannot capture the average effect of a marginal increase in the continuous
treatment, such as by one single CHF, which may also be of interest to the
analyst or researcher.

One potential approach that comes closer to the assessment of marginal
effects is to decrease the range of values of each bracket and, in the extreme
case, creating dummies for every possible value of the treatment.
Depending on the empirical problem, however, this might be practically
infeasible if the sample size is limited and the treatment can take (infinitely)
many different values. An alternative approach consist of directly including
D rather than any discretized version thereof in the linear regression, which
models Y as a linear function of D and an error term ε, in analogy to
equation (3.5):

Under the independence assumption in expression (3.55), a linear
regression based on equation (3.56) permits evaluating the average effect of
a marginal increase in D on Y, which conveniently corresponds to
coefficient β. This can be roughly interpreted as the average increase in the
outcome (measured in units of Y) due to an increase in D by 1 unit, such as
1 CHF.

To better see this result, let us denote by μd = E[Y|D = d] the conditional
mean of Y, given a specific value d of treatment D. Furthermore, we note
that μd = E[Y(d)], which follows from expression (3.55), ruling out
treatment selection bias across values of d. Therefore, the first derivative of



μd with regard to the treatment, denoted by , tells us how much the
mean potential outcome E[Y(d)] changes in reaction to a marginal change in
the continuous treatment D at treatment value d. To obtain the average of
such marginal effects in the population, we take the average derivative
E[∇μD] in equation (3.56), which yields

Interestingly, the result in equation (3.57) holds even if the outcome model
postulated in equation (3.56) is incorrect, in the sense that Y is not a linear
function of D, meaning that the marginal effect of the treatment may not be
constant across different treatment doses. The latter implies that ∇μd

generally differs across treatment values of d. Even in this case, β
nevertheless yields the average marginal effect.

It is important to see that this average effect is based on an increase in D
for everyone in the population, and thus it averages the effects over subjects
with distinct treatment values as they occur in the population. This
approach yields the average effect of increasing spending on employee
training by, say, 1 CHF in the total population of employees, without
distinguishing the effect by how much has previously been spent on
employee training. However, this baseline level (or point of departure) of D
could play a role in the size of the marginal effect. For instance, marginally
increasing spending might on average be particularly beneficial for
employees who received particularly little or particularly much training
before (such that their D is comparably large or small). This suggests that
not only does the average marginal effect across all values of D in the
population appear interesting, but the marginal treatment effect at a
particular value of D = d does as well. For instance, we might want to
evaluate the average effect of one additional CHF conditional on d = 1000
or d = 2000—that is, if employees previously participated in training
activities worth either 1,000 or 2,000 CHF.

Such a marginal effect corresponds to the derivative ∇μd at a specific
baseline value of interest, d. In general, the marginal effect ∇μd differs from
the average marginal effect E[∇μD], with the exception of the special case
that the marginal effect is the same for everyone across all baseline values d
—that is, independent of the previously received treatment. The marginal



effect is then said to be constant or homogeneous, which can be formally
stated as follows:

The equality in equation (3.58) implies that when picking any two
arbitrary and different baseline treatment values d and d′ (e.g., training
expenditures), a small increase in the treatment in D (e.g., by 1 USD) has
the same effect, no matter how small or big d and d′ are, which is thus
homogeneous. Very much in contrast to our previous applications of linear
regression, such a homogeneous effect implies that the conditional mean
outcome E[Y|D] is truly linear in D. This is illustrated in figure 3.4, in
which the outcomes are plotted against a continuously distributed treatment
and the solid line corresponds to the mean potential outcome for specific
values of the treatment. Only under homogeneous effects, and thus a linear
association between E[Y|D] and D, does the linear regression in equation
(3.56) permit identifying the marginal effect at a specific value of d, simply
because  for any d and d′ under the condition in equation
(3.58). In this case, a linearity assumption indeed underlies the linear
regression approach, which was not the case when considering binary or
multiple discrete treatments.

Figure 3.4
Linear association of the outcome and treatment.



However, in many empirical settings, the causal relation of the outcome
and a continuous treatment might be nonlinear, implying that marginal
effects are not homogeneous, but rather differ depending on the baseline
values of the treatment. Figure 3.5 illustrates such a nonlinear relationship,
with the solid line characterizing the mean potential outcome as a function
of the treatment. In this example, the outcome-treatment relation is even
nonmonotonic because the mean potential outcome first increases in the
treatment for comparably small values of d but then decreases after D
surpasses a specific value. If we want to permit such nonlinear associations
and, thus, heterogeneous effects rather than imposing linearity, we may still
use linear regression, but we can make it more flexible by also allowing
nonlinearities. This is obtained by also including higher-order terms of D in
the regression, such as its quadratic term D2:

Figure 3.5
Nonlinear association of the outcome and treatment.

In equation (3.59), two coefficients (rather than one) are relevant for the
computation of the marginal effect (namely, β1 and β2). We can easily see
this by taking the first derivative of E[Y(d)] with regard to d based on the
regression model in this equation:



Equation (3.60) shows that the marginal effect coming from our
nonlinear model now depends on the treatment value d, which
heterogeneously affects the magnitude of the marginal effect through the
factor 2β2. We might therefore estimate equation (3.59) in the sample and
use the coefficient estimates to compute any marginal effect of interest
based on equation (3.60). However, including even more higher-order terms
like D3 (i.e., cubic or even higher) in the regression further increases the
model’s flexibility to incorporate nonlinearities and heterogeneous effects.
Yet, picking too many higher-order terms, in particular when they are
actually not relevant for correctly modeling the association between E[Y|D]
and D, comes with the cost of increasing the variance of effect estimation,
in particular if the sample size is limited. Ideally, we would like to cleverly
choose the amount (or order) of higher-order terms in a way that minimizes
the overall estimation error, in particular the MSE considered in equation
(3.34) at the end of section 3.3.

As we have already discussed, the MSE consists of both a variance
component, due to including too many irrelevant higher-order terms, and a
bias component, due to including too few higher-order terms that are
relevant for appropriately describing effect heterogeneity. In fact, we can
choose the optimal order aiming at minimizing the MSE and thus optimally
trade off bias and variance in a data-driven way called cross-validation; see,
for instance, Stone (1974). We will discuss cross-validation in more detail
in section 4.2 in chapter 4. Such an estimation approach based on first
determining the optimal number of higher-order terms and then estimating
the marginal effects of interest is also known as series regression. It is an
example of nonparametric methods aiming at a flexible estimation of
regression functions without imposing restrictions like the linearity
condition in equation (3.58).

An alternative nonparametric approach is kernel regression, which is
more thoroughly considered in section 4.2. It estimates the conditional
mean E[Y|D = d] or the marginal effect  based on a weighted average
of outcomes in the sample, in which more importance (or weight) is given
to observations with treatment values that are close to the value d of



interest. Also in this case, cross-validation can be used for finding the
weighting scheme that is optimal for computing the weighted average, in
the sense that it minimizes the MSE. As with most things in life, however,
the use of nonparametric approaches does not come entirely for free. The
price to pay for their attractiveness in terms of flexibility is that they tend to
have a higher variance and, thus, a higher level of uncertainty when
estimating the causal effects. In particular, the estimated marginal effects
converge to the true effects at a slower pace than the optimal rate of 
discussed in section 3.3, but estimation nevertheless satisfies asymptotic
normality and consistency under specific conditions. In large enough
samples where the costs in terms of variance are small relative to the gains
in flexibility, nonparametric methods therefore appear to be an attractive
alternative to linear regression in the case of a continuous treatment.

Let us conclude this section with two empirical examples that apply
regression with multiple treatments and nonparametric regression,
respectively, with a continuous treatment in R. Assuming that all packages
have been properly installed, we load the causalweight, lmtest, and
sandwich packages using the library command. In the next step, we use the
data command to load the wexpect data set provided in the causalweight
package and previously analyzed in Fernandes, Huber, and Vaccaro (2021).
By using ?wexpect to address the help file, we see that the data contain the
wage expectations of 804 Swiss college or university students, as well as
dummies for two mutually exclusive treatments that were randomly
assigned before students answered a questionnaire on their wage
expectations, among others. The first treatment, named
treatmentinformation, included a graph with information on the monthly
gross private-sector earnings by age and gender in the questionnaire, which
could arguably affect a student’s wage expectations. The second treatment,
treatmentorder, reversed the order of questions about professional (e.g.,
workplace-related) and personal (e.g., family-related) preferences. This
permits checking whether asking personal rather than professional
questions first matters for wage expectations due to so-called framing
effects, implying that the questions’ order influences the perceived
importance of private versus professional life.



We extract the information and order treatments from the wexpect data
and store them in separate R objects, D1 and D2, by running
D1=wexpect$treatmentinformation and D2=wexpect$treatmentorder.
Likewise, we define the expectations about the monthly gross wages three
years after studying as outcome Y, which are measured in brackets of 500
CHF (such that an increase by 1 unit means having 500 CHF more):
Y=wexpect$wexpect2. We then run a linear regression using the lm
command with D1 and D2 as treatments, which need to be separated by a +,
and store the output in an R object called ols: ols=lm(Y ∼ D1+D2). Finally,
we inspect the regression output using the coeftest command. The R code
for these steps is provided in the box shown here.

Running the code yields the following output:

The ATE estimate of the information treatment D1 amounts to roughly
0.345 (or roughly 173 CHF when calculating 0.345 × 500), which suggests
an increase in expected monthly gross wages. However, the effect is not
statistically significant at the 10 percent level, as the p-value is roughly
0.156 (or 15.6 percent). We therefore fail to reject the null hypothesis at any
conventional level of significance. The ATE estimate for the order treatment



is even less statistically significant, with the p-value amounting to roughly
45.9 percent and also closer to zero in absolute terms. Therefore, we do not
find compelling statistical evidence for nonzero ATEs of our two
interventions.

For our second empirical example considering a continuous treatment,
we load the datarium package by Kassambara (2019), which contains the
marketing data set, and the np package by Hayfield and Racine (2008) for
nonparametric kernel regression, as discussed in more detail in section 4.2.
After loading the marketing data using the data command, we address the
help file ?marketing. The sample consists of 200 observations with
information on sales and advertising budgets, containing (among others) a
variable called newspaper, which measures the budget of advertising in
newspapers in thousands of USD. This variable is our continuous (and
assumably randomly assigned) treatment variable, and we store it in an R
object named D. Our outcome variable, which we define as Y, are the sales,
whose exact unit of measurement, however, is not revealed in the help file.

We use the npregbw command for nonparametrically estimating the
association of Y and D, where the latter two variables need to be separated
by ∼, just as in the lm command. The npregbw procedure uses cross-
validation, as explained in section 4.2, to estimate the association in a way
that minimizes the average of the MSE across all treatment values in the
sample. After storing the regression output in the R object results, we use
the plot command to plot the regression function: that is, the estimate of the
conditional mean outcome E[Y|D] as a function of the values of the
treatment D. The first argument in the plot command is the regression
output results. As the second argument (separated from the first one by a
comma), we specify plot.errors.method=“asymptotic”, which also plots
confidence intervals based on the analytic formula (rather than the
bootstrap) for the standard error. See the box here for the R code of the
various steps.



Running the code yields the graph in figure 3.6. The y-axis in the latter
gives the estimates of the conditional mean outcomes E[Y|D = d], while the
x-axis provides the value d of the advertising treatment D. By and large, the
solid regression line suggests that newspaper advertising positively affects
average sales up to a budget of roughly 90,000 USD, while the association
is rather flat (and even slightly decreasing) for even higher budgets. This
suggests a nonlinear relation between the outcome and the treatment.
However, it needs to be pointed out that the association between average
sales and spending for newspaper advertising is not very precisely
estimated for larger values of the treatment. The 95 percent confidence
intervals (shown by the dashed line) become very large beyond budgets of
90,000 USD due to the small number of observations with such high
spending.



Figure 3.6
Estimation of the conditional mean outcome.

The np package also gives us the opportunity to plot the marginal effects 
 (rather than the conditional mean outcomes) across value d of the

advertising treatment D, which is the first derivative of the solid line in
figure 3.6. To do so, we simply add the argument gradients=TRUE to the
previous use of the plot command:

Running the code generates the graph in figure 3.7. We can see that the
marginal effects on average sales of slightly increasing the advertising
budget are statistically significantly positive over a limited range of
baseline budget values around 60,000 USD—namely, whenever the 95
percent confidence intervals (dashed line) do not include a zero effect. In
contrast, the marginal effects are statistically insignificant when considering
larger baseline values of the treatment, as the confidence intervals are rather
wide and always include a zero effect.



Figure 3.7
Estimation of the marginal effects.

3.6 Including Covariates

Under the satisfaction of the independence assumption in equation (3.1), as
in experimental studies with a successfully randomized treatment, treated
and nontreated groups are comparable in terms of any background
characteristics that affect the outcome. For this reason, we need not include
(i.e., control for) any characteristics that are observed in the data in our
regression to unbiasedly and consistently estimate the ATE. Nevertheless,
controlling for observed characteristics, commonly referred to as
covariates, might be beneficial in terms of reducing the variance (and thus,
uncertainty) of treatment effect evaluation. To consider this possibility, let
us denote by X = (X1, X2, …, XK) a vector of covariates measured at or
before treatment assignment, with X1, X2, …, XK denoting the first to the Kth
covariate and K being the number of observed covariates.

As the covariates X are measured prior to treatment, they cannot be
affected by D unless subjects anticipate their future treatment in a way that
influences their covariates even before the treatment, a case that we rule out
in the subsequent discussion. Assuming treatment D to be binary and
denoting by X(1) and X(0) the potential covariates as a function of the



treatment (in analogy to the definition of potential outcomes), this implies
that X(1) = X(0) = X. As we will see later in this chapter, this property is
crucial because otherwise, X would be a function of the treatment and thus
an outcome itself (just as Y is) and in general, controlling for variables
affected by the treatment might jeopardize the randomization of the latter.
Figure 3.8 provides such a causal framework, where pretreatment covariates
X may influence Y, but (due to random treatment assignment) neither
influence nor are influenced by D. In contrast, X may influence or may be
influenced by unobserved characteristics U that affect the outcome (but not
D due to treatment randomization), as indicated by the bidirectional dotted
causal arrow.

Figure 3.8
Pretreatment covariates.

Let us reconsider equation (3.6) in section 3.2, and now additively
include the covariates on the right side, as regressors, to control for them:

This models the conditional mean outcome, given the treatment and the
covariates, by the following linear function:



We note that some of the variation in Y that was previously part of the error
term in equation (3.6) is now captured by X in equation (3.61), such as age
or gender if observed in the data. Therefore, the number of unobservables
included in U goes down, and relatedly, the residuals  estimated in the
sample tend to decrease in absolute magnitude: that is, they generally get
closer to zero. Put differently, some of the unexplained part in Y that is due
to unobserved characteristics is shifted to the explained part due to the
inclusion of X.

To discuss this more formally, let us reconsider the definition of the
outcome in the sample provided in equation (3.50) and add the covariates,
along with their coefficient estimates in analogy to equation (3.61):

where Xi1, …, XiK denotes the covariate values of observation i in the sample
and Ê[Yi|Di, Xi] is an estimate (or prediction) of the conditional mean
outcome E[Y|D, X]. Reconsidering the formula for the goodness-of-fit
criterion R2 provided in equation (3.52), and now including covariates,
yields the following definition of R2:

It is easy to see that in equation (3.64), the share of the sample variation
in Y explained by D and X, is larger than  in equation (3.52), the
sample variation in Y explained by D alone, whenever X partly explains Y,
while  is smaller due to reduced variance of . This in turn implies that
the estimated variance of D given in equation (3.36) is reduced, entailing a
decrease in the standard error se(  ), and thus an increase in the t-statistic
(expression (3.41)) and a reduction in p-value (equation (3.42)) for any
nonzero ATE estimate. In short, estimation uncertainty goes down, while
the likelihood (or statistical power) to detect ATEs that are different from
zero in the population goes up.

It is important to note that even if the influence of X on Y is not linear,
such that equation (3.62) is in fact an incorrect (or misspecified) model for



the outcome, we can nevertheless consistently estimate the causal effect of
D. While this approach may introduce some estimation bias in small
samples (of a few hundred observations or fewer) as demonstrated in
Freedman (2008), the bias quickly goes to zero as the sample size grows. In
light of the discussion on linear and nonlinear associations in section 3.5,
this result may seem surprising, but it comes from the fact that D is not
associated with X due to randomization: that is, D⊥X. For this reason, the
error of incorrectly assuming a linear association between Y and X does not
spill over to the evaluation of the ATE and therefore does not introduce any
asymptotic (i.e., large sample) bias in D. This would not be the case if the
treatment were not fully randomized, but rather were associated with X, as
discussed in chapter 4.

In contrast to our discussion so far, let us now consider the case where X
is affected by D, such that X(1) ≠ X(0). In general, controlling for X does no
longer allow for assessing the causal effect of the treatment for two reasons.
First, part of the causal effect of D on Y might operate via X, such that
controlling for the latter switches off or conditions away this effect. As an
empirical example, let us consider the effect of mothers’ smoking behavior
during pregnancy (D) on children’s health outcomes (Y), such as postnatal
infant mortality, when using birth weight as the control variable (X). Having
a higher or lower birth weight, however, can already reflect part of the
negative effects of smoking on a child’s health. In this case, controlling for
birth weight (e.g., by only considering newborns with a low birth weight)
conditions away part of the negative effect on postnatal health, such that
only the direct impact of D on Y that does not operate via X remains.
Section 4.10 in chapter 4 provides a more detailed discussion of the
distinction between direct and indirect effects operating via intermediate
variables.

The second reason for the nonidentifiability of the treatment effect is that
controlling for posttreatment covariates X affected by D destroys the
randomization of the treatment in the likely case that X is influenced by
some unobservables U that also influence Y. In fact, if both D and U have a
causal effect on X, then subjects with different treatment values (D = 1 or D
= 0) that have the same value in X generally differ in terms of U; otherwise,
they would not have the same value in X. If U also affects Y (e.g., postnatal



health), this implies that the independence assumption in expression (3.1)
no longer holds when considering treated and nontreated units with the
same values in X. Therefore, controlling for X introduces a statistical
association between D and U that initially (i.e., without controlling for X)
does not exist. This specific form of selection bias is discussed in
Rosenbaum (1984), and it is also known as “collider bias” in statistics (see
Pearl (2000)).

The graph in figure 3.9 illustrates such a causal framework, in which D
partly affects Y via X, such that controlling for the latter conditions part of
the effect away. Furthermore, both D and U have a causal effect on X, such
that controlling for the latter introduces a statistical association between D
and U. For this reason, X is referred to as a “collider” in statistics because
the effects of D and U collide when conditioning on X. Due to these issues,
covariates affected by D are also called “bad controls”—for instance, see
Angrist and Pischke (2008)—indicating that they should not be considered
as control variables when assessing causal effects.

Figure 3.9
Posttreatment covariates that are bad controls.

Reconsidering our empirical example, collider bias implies that those
newborns having a low birth weight (X) because the mother was smoking
during pregnancy (D = 1) are not comparable to newborns of nonsmoking
mothers (D = 0), because the low birth weight of the latter group is
necessarily caused by other characteristics (U) besides smoking. An
example of such other characteristics is increased incidence of birth defects,
which also affect postnatal mortality (Y). By comparing low-birth-weight



children of smoking and nonsmoking mothers, one incorrectly mixes the
causal effect of smoking with that of the birth defects. As discussed in such
papers as Wilcox (2001) and Hernandez-Diaz, Schisterman, and Hernan
(2006), one might then paradoxically find a negative association between
smoking and the mortality conditional on having low birth weight, which
apparently contradicts the generally negative effects of smoking found in
health studies. But in reality, this result is driven by differences in birth
defects or other characteristics across treatment groups due to ignoring the
selection problem created by controlling for X.

Let us now consider an empirical example in R and run a linear
regression that includes pretreatment covariates. To this end, we analyze an
experimental information campaign conducted by the Ecosystem Europe
nongovernmental organization in Bulgaria. It was based on randomly
distributing leaflets to high school and university students with information
about the environmental and social implications of coffee production and
measuring their awareness of environmental issues after receiving or not
receiving the information. We load the causalweight package, which
contains the coffeeleaflet data with 522 observations on Bulgarian students,
as well as the lmtest and sandwich packages (for heteroscedasticity-robust
standard errors) using the library command. In the next step, we load the
data set into the R workspace using data(coffeeleaflet) and apply the attach
command to the coffeeleaflet data. The latter defines each variable in the
data as an own R object, thus avoiding the use of the $ extension for
addressing any variable in coffeeleaflet.

By ?coffeeleaflet, we access the documentation for the 48 variables. The
binary variable treatment contains the random assignment to receiving
versus not receiving the leaflet, which we define as D: D=treatment.
Furthermore, we consider awarewaste, a student’s awareness of waste
production due to coffee production on a 5-point scale (1=not aware, …,
5=fully aware), as outcome Y: Y=awarewaste. In the next step, we use the
cbind command to append two covariates, mother’s education and student’s
gender (which are measured prior to the treatment) column by column, in
order to generate a covariate matrix X: X=cbind(mumedu,sex). We then run
a linear regression of outcome Y on both D and X using the lm command,
with ∼ separating the outcome from the regressors D, X and + separating D
and X, and store the results in an R object called ols: ols=lm(Y ∼ D+X).



Finally, we apply coeftest(ols, vcov = vcovHC) to display the regression
output in the R object ols. The box shown here provides the R code for
each of the steps.

This yields the following output:

Our results suggest that the information leaflet increases the awareness
of coffee-induced waste production on average by 0.332 points (on a 5-
point scale). The ATE is highly statistically significant, even at the 0.1
percent level, because the p-value is 0.0006 < 0.001. We also find that
mother’s education is statistically significantly associated with the outcome
at the 1 percent level conditional on the other regressors, while student’s
gender is not statistically significantly associated at any conventional level
because its p-value of 0.171 (or 17.1 percent) exceeds 0.1 (or 10 percent).
However, we bear in mind that the coefficients on the covariates generally
cannot be interpreted as causal effects, first because X is not randomized
and may be correlated with unobservables (in contrast to D) and second,
because the association of Y and X need not be linear.



4
Selection on Observables

4.1 Identification under Selection on Observables

For many causal questions in the social sciences and life more generally,
experiments are the exception, or even fully absent. In fact, a large share of
empirical analyses are based on observational rather than experimental data,
which may come from surveys (e.g., an online survey among customers),
company data (e.g., product features and sales in stores), or administrative
data (e.g., information on labor market performance and public transfer
payments). Observational data typically contains one outcome (or even
several outcomes), a range of observed covariates, and the treatment of
interest, which is, however, not randomly assigned. For this reason, the
previously imposed independence assumption in expression (3.1) from
section 3.1 in chapter 3 appears generally implausible and a simple
comparison of the mean outcomes of treated and nontreated groups seems
inappropriate for assessing the average treatment effect (ATE). Are there
scenarios where causal analysis works with observational data despite the
absence of a proper experiment? The answer is yes, if the information on
pretreatment covariates is rich enough to facilitate an alternative strategy
for the evaluation of causal effects based on a selection-on-observables
assumption.

The selection-on-observables assumption, also called conditional
independence, unconfoundedness, or exogeneity, postulates that the



covariates in the data are comprehensive enough to control for the influence
of any confounders: that is, characteristics jointly affecting the treatment
and the outcome. This is satisfied if we directly observe covariates with an
effect on both the treatment and the outcome, or if controlling for the
covariates blocks the effects on either the treatment or the outcome (or
both) of any unobserved confounders (that would otherwise jointly affect
the outcome and the treatment). Put differently, the treatment is assumed to
be as good as if it were randomly assigned (as in an experiment) among
those treated and nontreated subjects that are comparable in terms of
observed characteristics.

Let us, for instance, consider the causal effect of a discount on
customers’ buying decision in an online marketplace. Then the selection-
on-observables assumption implies that when only considering customers
that are comparable in covariates, such as past buying behavior (which may
jointly affect the current buying decision as well as the likelihood of being
offered a discount), receiving a discount or not is as good as if it were
randomly assigned. This appears plausible if the characteristics that
importantly or exclusively determine a discount are known and observed:
for instance, if the online marketplace offers discounts depending on a
customer’s past buying behavior, and if unobserved characteristics affecting
the discount are unlikely to also affect the outcome after controlling for the
covariates. The latter condition, for instance, is satisfied if the availability
of discounts varies seemingly randomly over time among customers with
the same buying history, due to ad hoc changes in a company’s discount
policy.

However, it is important to note that the selection-on-observables
assumption is unlikely to be satisfied in many empirical contexts. Quite
often, we do not plausibly observe all the factors that drive confounding of
the treatment and outcome of interest. For instance, specific personal
characteristics such as ability, intelligence, motivation, or personality traits
like self-confidence and extrovertedness are rarely measured in data but
might influence treatment decisions like training participation, while also
having an impact on labor market outcomes like earnings or employment.
Then, controlling for observed covariates alone will not account for all
sources of bias when estimating causal effects and may in specific cases
even increase biases coming from unobserved characteristics relative to not



controlling for any variable, such as the results discussed in Brooks and
Ohsfeldt (2013). The plausibility of the selection-on-observables
assumption, therefore, needs to be scrutinized based on theoretical
arguments, domain knowledge, or previous empirical findings, all of which
may provide guidance on which variables likely affect both the treatment
and the outcome in the causal evaluation problem at hand. In later sections,
we will consider alternative causal strategies that may be applied when the
selection-on-observables assumption would likely fail, given that other (but
not necessarily weaker) assumptions are satisfied.

In addition to the selection-on-observables assumption, a second
condition is common support, which requires that for any combination of
covariate values occurring in the population, there are both treated and
nontreated subjects. For instance, for any value that past buying behavior
may take (measured by such statistics as the total volume of previous
purchases), there must be individuals receiving and not receiving a discount
as the treatment in the customer population of interest. Common support
rules out that the covariates deterministically predict the treatment, which
would imply that everyone or no one was treated for specific values of the
covariates. As a final assumption, we stipulate that the covariates are not
affected by the treatment, but measured at or prior to treatment assignment.
Otherwise, controlling for them risks conditioning away part of the
treatment effect or introducing collider bias, as we have already discussed
in section 3.6.

To formally introduce these assumptions, let us focus on a binary
treatment and, analogously to section 3.6, denote by X = (X1, X2, …, XK) the
observed covariates, whose number is K, and by X(1), X(0) the potential
covariate values with and without treatment:

where p(X) = Pr(D = 1|X) is the conditional treatment probability, also
known as propensity score. The first assumption in expression (4.1) states
that the potential outcomes are conditionally independent of the treatment
when controlling for (or conditioning on) covariates X. This implies that D
is as good as randomly assigned among subjects with the same values of X.



The causal graph in figure 4.1 displays a framework that satisfies this
conditional independence assumption. The covariates X jointly affect D and
Y, but conditional on X, there are no further unobserved variables that
influence both D and Y. This still allows for sets of unobserved variables
affecting either D or Y, which are omitted from the graph, so long as these
sets are not statistically associated (e.g., correlated) with each other. The
second assumption in equation (4.1) says that the propensity score is greater
than zero and less than 1, such that D is not deterministic in X and common
support holds. The third assumption requires that X is not a function of D,
and therefore must not contain posttreatment characteristics that are
affected by the treatment. Under these assumptions, we can mimic the
experimental context with the help of observed information. After creating
groups with and without treatment that are comparable in the covariates,
differences in the outcomes are assumed to be exclusively caused by the
treatment.

Figure 4.1
Selection on observables.

We note that the first assumption in expression (4.1) is actually
somewhat stronger than required for the evaluation of the ATE. The latter
could also be identified under the somewhat weaker conditional
independence of the potential outcome means, E[Y(1)|D = 1, X] = E[Y (1)|D
= 0, X] and E[Y(0)|D = 1, X] = E[Y (0)|D = 0, X]. In contrast, the conditional
independence assumption in expression (4.1) also concerns higher moments
of the potential outcome distributions, like the variance. In empirical
applications, however, it might be hard to argue that conditional



independence holds in means, but not in other distributional features, which
would for instance rule out mean independence for nonlinear
transformations of Y that are common in empirical research. Labor market
applications, for example, frequently consider the logarithm of the wage as
the outcome rather than the wage itself. In this context, conditional mean
independence would imply that only the potential average wages were
conditionally independent of the treatment (e.g., some training), but not
their logarithmic transformations, which might appear odd.

Furthermore, the stronger conditional independence assumption in
expression (4.1) is required for the identification of causal effects that
concern the distribution (rather than the mean) of the potential outcomes,
like the quantile treatment effect (QTE). The latter corresponds to the effect
at a particular rank of the potential outcome distribution, such as the impact
of training on the median wage, which is the wage at the 0.5 rank such that
50 percent of the population earn more and 50 percent earn less than that
wage. We will discuss the QTE in more detail in section 4.8.

A second remark concerns the identification of treatment parameters
among the treated (rather than the total) population, like the average
treatment effect on the treated (ATET), rather than the ATE. In this case, the
conditional independence assumption in expression (4.1) may be relaxed to
apply only to the potential outcomes under nontreatment: Y(0)⊥D|X.
Furthermore, we may relax the common support restriction to p(X) < 1. The
reason is that when assessing the ATET, for all treated observations, there
must exist nontreated observations with comparable covariates X.
Therefore, p(X) must not be 1, which would imply that only treated existed
for some values of the covariates X (e.g., everyone older than 50 receives
the treatment). However, as we are interested in the ATET rather than the
ATE, we need not find comparable treated observations for each nontreated
observation. This implies that p(X) might be zero for some values of X, such
that only nontreated observations exist with such values (e.g., no one
younger than 20 receives the treatment). We will henceforth abstain from
making such relaxations in our assumptions and stick to the conditions in
expression (4.1), which permit assessing average and distributional causal
effects in the total population.



To show how our assumptions permit identifying causal effects, let us
use μd(x) = E[Y|D = d, X = x] to denote the conditional mean outcome, given
that treatment D is equal to value d ∈{0, 1} (i.e., d is either 0 or 1) and X is
equal to value x. Because the treatment is as good as randomly assigned
conditional on the covariates under expression (4.1), μ1(x) − μ0(x) identifies
the causal effect among subjects with the same values x of observed
covariates X, denoted by Δx:

Equation (4.2) is a conditional version (given X) of equation (3.2) in section
3.1 for the experimental case, for which controlling for covariates is not
required. We will henceforth refer to Δx as the conditional average treatment
effect (CATE), because it corresponds to the average effect under the
condition that subjects share the same covariate values X = x.

The identification of the CATE also permits identifying the ATE—
namely, by averaging CATEs across all values of x (e.g., age measured in
years), which the covariates X take in the population:

In the selection-on-observables framework, treated and nontreated groups
may generally differ in terms of their covariates X, and therefore, also in
terms of causal effects if the latter depend on the covariates. For instance,
the effect of a discount could vary across the previous buying behavior.
This is very much in contrast to the experimental framework where treated
and nontreated groups are assumed to have comparable characteristics,
including covariates X. It may be interesting, therefore, to consider the
effects for subpopulations with a different distribution of X than the total
population.

One group that has received a lot of attention in empirical evaluations is
the treated population. The causal effect on those receiving the treatment
may in many contexts be more relevant than the effect on the total
population, if it is not feasible or desirable to provide a treatment to
everyone. For instance, a training program might deliberately only target
individuals that satisfy specific criteria in terms of experience or education,
such that the causal effect on exactly this group is of interest, rather than on



someone else. To identify the ATET, the CATEs are averaged across the
covariate values x appearing among the treated (rather than the total)
population, such that we condition on D = 1 when taking expectations of
the CATE:

The second equality in equation (4.4) follows from the law of iterated
expectations, implying that E[μ1(X)|D = 1] = E[E[Y|D = 1, X]|D = 1] = E[Y
|D = 1]. We can apply an analogous approach for identifying the average
treatment effect among the nontreated (ATENT):

4.2 Linear, Series, and Kernel Regression

By the selection-on-observables assumption in expression (4.1), it holds
that the conditional potential outcome given X corresponds to the
conditional observed outcome given D and X—that is, E[Y(D)|X] = E[Y |D,
X] = μD(X). This permits identifying the CATE as outlined in equation (4.2)
in the last section. Therefore, by defining and estimating a regression model
for E[Y|D, X], we may ultimately evaluate the CATE and any averages
thereof as the ATE and the ATET. Analogously to equation (3.62) in section
3.6, where we assumed that D was randomly assigned, we might be tempted
to posutlate a linear regression model for μD(X); that is,

In analogy to equation (3.14) in section 3.3, but now controlling for X, the
ordinary least squares (OLS) estimate of D can be shown to correspond to
the conditional sample covariance of Y and D when controlling for X,
divided by the conditional sample variance of D when controlling for X:

However, there is an important conceptional difference when it comes to
linear models in a selection-on-observables framework compared to social



experiments. As X may affect D, the treatment and covariates are generally
correlated such that Cov(D, X) ≠ 0. Such a correlation has implications for
the properties of the OLS estimate . First, it entails a larger variance of 
relative to the case of no correlation (Cov(D, X) = 0), as satisfied in the
experimental context. Intuitively, this is because effect estimation only
hinges on the variation in D, which is not associated with covariates X, as
we control for (i.e., fix) the latter. Second, incorrectly assuming a linear
regression model as in equation (4.6) generally implies that  is biased and
inconsistent for estimating causal effects, very much in contrast to an
experiment (see our previous discussion in section 3.6). In fact, if the linear
specification in equation (4.6) does not reflect the true relationship between
Y and X, this misspecification generally spills over to the estimation of βD

through the correlation of D and X, such that treatment effects cannot be
consistently estimated by D.

One example for such a misspecification is the omission of
multiplicative interactions between covariates, such as X1 · X2. The latter
implies that the association of X1 (e.g., customer’s past buying behavior)
with Y (e.g., a buying decision) differs across values of X2 (e.g., customer’s
education), or, analogously, that the association of X2 with Y differs across
values of X1. A further example for misspecification is the omission of
higher-order terms such as , meaning that a customer’s past buying
behavior has a nonlinear association with the buying decision.

Finally, let us consider the omission of interactions between treatment D
and some or all variables in X (or their respective higher-order terms), by
which the treatment effect differs (i.e., is heterogeneous) across distinct
values of the covariates. The omission generally causes βD in equation (4.6)
to be different from Δx, such that the estimator D is again biased and
inconsistent for estimating the CATE. We also note that in the linear model
postulated in equation (4.6), it holds that E[βD] = E[Δx] = Δ = βD. That is, by
not including interactions between D and X, average effects are implicitly
assumed to be the same (or homogeneous) across values of X such that
CATE=ATE=ATET. In many empirical applications, it appears unrealistic
to assume that causal effects are the same across groups with distinct
observed characteristics. For instance, a discount could have a different
effect on the buying decisions of customers previously buying little versus



those spending a lot. Unless we have strong prior knowledge that effects are
homogeneous, a method that allows heterogeneous effects across X appears
preferable to avoid model misspecification.

What can we do to improve the linear regression model in equation (4.6)
to address such concerns of misspecification? One way to make the model
more flexible in terms of its specification is to add such previously
mentioned interaction terms between D and X or between elements in X, as
well as higher-order terms in X, as additional regressors:

Estimating the model in the sample yields the coefficient estimates ( , D, 
X1, …). The latter permit estimating 1(X) by setting the treatment to 1 and 
0(X) by setting the treatment to zero in the estimated model of equation
(4.8). We can then compute the ATE by averaging the difference 1(X) −
0(X) in the sample:

In analogy to equation (4.9), we may also estimate the ATET by
averaging the CATEs in the subsample of treated observations as follows:

where  is the number of treated observations. As noted in
Imbens and Wooldridge (2009), the ATE estimate in equation (4.9) is
numerically equivalent to the coefficient of Di obtained from a regression of
Yi on a constant, Di, Xi (and possibly higher-order terms and interactions
thereof), and the interactions  denotes the sample means of
the covariates such that  are demeaned covariate values in the data:



By running this convenient regression, we directly estimate the ATE by D

and avoid the two-step procedure of first computing the CATEs and then
averaging over them.

It is worth noting that equation (4.8), which includes interactions
between D and X and its higher-order terms, can equivalently be expressed
by means of two separate equations for D = 1 and D = 0 without including
interaction terms between D and X:

This suggests estimating coefficients ( 1, X1, 1, …) and ( 0, X1, 0, …) by
regressing Y on a constant, X, and its interaction/higher-order terms only
within the treated or nontreated observations. We can thus obtain 1(X) and 

0(X) by estimating the first and second lines in equation (4.12),
respectively, and computing the ATE or ATET based on averaging
appropriately.

However, a practical issue in regression specifications like equations
(4.8) and (4.12) is the question of how to optimally choose the number of
interaction and higher-order terms. Similar to the discussion of a continuous
treatment at the end of section 3.5, including too few higher-order or
interaction terms may induce a bias in treatment effect estimation due to a
poor approximation of the true model μD(X). On the other hand, including
too many terms that have little or no influence on μD(X) (e.g., higher-order
terms whose coefficients are zero)—that is, overfitting the true model of
μD(X)—may increase the variance. This is due to the problem that including
irrelevant terms does not only approximate μD(X), but also captures part of
the error terms (previously denoted by ε, which is a function of
unobservable U affecting the outcome) that are specific to the sample at
hand. Therefore, the resulting estimates of the conditional means under
treatment and nontreatment, denoted by 1(X) and 0(X), might not
generalize well to other randomly drawn samples with a different
distribution of error terms. It is this sensitivity of 1(X) and 0(X) with



regard to the particularities of a data set that drives the estimation
uncertainty, and therefore the variance of an estimator.

As already briefly discussed in section 3.5, one way to optimally balance
the trade-off between the bias and the variance to minimize the overall
estimation error in 1(X) and 0(X)—namely, the MSE introduced in section
3.3—is leave-one-out cross-validation. Considering the estimation of 1(X),
it is based on finding the combination of terms of X that minimize the sum
of squared deviations (or residuals) between an observed treated outcome Yi

and the estimated conditional mean among the treated observations
(satisfying i: Di = 1):

A key feature in the leave-one-out procedure of expression (4.13) is that
any treated observation i is itself not included (i.e., left out) when
estimating the conditional mean outcome given the covariate values of Xi.
The estimate of the conditional mean outcome for observation i is therefore
denoted by 1, −i(Xi), with − i indicating the exclusion of observation i. The
aim of this approach is to appropriately account for overfitting, and thus an
estimator’s variance when searching for the optimal model of the
conditional mean that minimizes the overall estimation error, which consists
of both the bias and the variance. To see this, let us consider the contrary
case of including observation i when estimating the conditional mean and
denote this estimate by 1, +i(Xi). Then we can always further reduce the
squared residual [Yi − 1, +i(Xi)]2 by including more higher-order or
interaction terms, such that 1, +i(Xi) better approximates Yi due to its
increased flexibility. However, this approach will eventually overfit (i.e., fit
away) the true error term εi = Yi − μ1(Xi), which represents that part of the
outcome Yi that is not due to covariates Xi, but rather to unobserved
characteristics.

For this reason, we leave observation i out and use only the remaining
sample when estimating the conditional mean outcome for observation i.
The latter can then be regarded as a sample on its own of just one
observation, as it is held out of the remaining sample used to compute 1,

−i(Xi). By estimating the conditional mean outcome in one sample, say



among all observations but i, and assessing the estimation error in the other
sample, say for observation i based on the squared residual [Yi − 1, −i(Xi)]2,
we properly consider the overfitting or variance problem. As we take an
estimated model from one sample to assess its error measured by the
squared residual of another sample (or out-of-sample), the variability of
observations across samples that drives an estimator’s variance is accounted
for, very much in contrast to model estimation and error assessment in the
very same sample. This implies that adding more interaction and higher-
order terms does not necessarily decrease the squared residual when using
the leave-one-out approach because both the variance and the bias enter this
squared residual.

Leave-one-out estimation corresponds to reestimating μ1(X) for all
treated observations in the sample by alternately dropping the respective
treated observation (for which μ1(X) is estimated) from the sample to
compute the squared residuals for all treated observations and add them up.
Cross-validation then consists of recomputing the sum of squared residuals
in equation (4.13) for different model specifications in terms of interaction
and higher-order terms of X and ultimately selecting the one that minimizes
equation (4.13). Formally, let p correspond to the number of higher-order
and interaction terms included in an estimator for μ1(Xi), which we denote
by 1, −i, p(Xi) to make the dependence on p explicit. Then, the optimal
specification of terms, denoted as popt, is obtained by minimizing the sum of
squared residuals as a function of p among a set of possible choices for
higher-order and interaction terms, denoted as P:

We then obtain the estimate of μ1(Xi) for observation i based on
estimating the conditional mean with the optimal specification popt, now
including observation i. Formally,

That is, after excluding i in order to optimally trade off bias versus variance
when selecting popt, we include it again for the actual estimation of 1(Xi)
based on the selected popt. The leave-one-out cross-validation procedure can



be analogously applied to the estimation of μ0(X). In general, the number of
terms in popt depends on the number of observations and tends to grow as
the sample size increases. This is because the variance tends to decrease in
larger samples, thus increasing the scope of more interaction and higher-
order terms for improving model flexibility and reducing the bias. However,
the optimal number of terms grows at a slower pace than the sample size;
otherwise, the bias would be reduced at a faster rate than the variance,
which would not entail an optimal bias-variance trade-off for minimizing
the overall error.

The estimation and cross-validation procedure that we just described is a
form of so-called series or polynomial regression. While it is more flexible
in terms of model specification than linear regression models, it shares the
feature that it permits estimating the conditional means μD(X) and the
CATEs for any thinkable covariate value X, even those with few or no
observations in the data. Based on the coefficient estimates ( 1, X1, 1X1, …),
one could, for instance, predict 1(X) for values of X that are far larger than
the ones observed in our sample, such as for individuals that are presumably
150 years old. As our coefficients are obtained based on the X values
observed in the data, however, predictions based on these coefficients may
be quite poor for X values far beyond our sample. This issue needs to be
kept in mind when using linear or series regression or any other so-called
global estimation method based on estimating the coefficients in the entire
sample.

As an alternative, there are local approaches to the estimation of μ1(X)
and μ0(X), that, in contrast to series regression, do not permit predictions far
beyond the observed data. The underlying idea is that we may estimate the
mean conditional outcome under treatment for a value X = x, μ1(x) as a local
average of observations with values of X that are close to x. The simplest
approach is to average the outcome of treated subjects with covariate values
that lie within a certain distance h around x. As X consists of K covariates, h
contains K values that define the maximum discrepancy that an observation
may have in terms of each of the K covariate values x = (x1, …, xK) for
being considered in the average. Taking age as a covariate, for instance, we
may set h = 2, implying that any observations no more than 2 years older or
younger than x=40 years are included for the computation of the average



treated outcome at the age of 40. Formally, such an average can be
expressed as

where I{|Xi −x|≤ h} is an indicator for all K covariate values within the
bandwidth and  is the number of treated observations
satisfying this bandwidth-related condition. The notation 1, h(x) makes
explicit that the conditional mean estimate depends on the specific choice of
the bandwidth h.

Equation (4.16) provides an unweighted average in the sense that it gives
the same weight (or importance) to all observations within the bandwidth.
However, even if within the bandwidth, we might want to give more weight
to observations whose X values are closer to x than to those whose values
are less comparable. For instance, we might judge someone who is only 1
year younger or older than the reference age of 40 to be more similar than
someone who is 2 years older or younger. For this reason, a more
sophisticated approach consists of weighting observations by a kernel
function, as already briefly discussed in section 3.5, which gives a higher
weight to observations with covariate values closer to x. Formally, the
weighted average corresponds to

which is known as local constant kernel regression or the Nadaraya Watson
estimator (Nadaraya 1964; Watson 1964).  denotes a kernel
function that is assumed to satisfy the following conditions: it integrates to
1 (formally: ∫ �(a)da = 1, where a is a specific value in the kernel function),
is symmetric around zero (∫ a�(a)da = 0, such that positive and negative
differences Xi −x with the same absolute value obtain the same weight), and
is of a bounded second order such that ∫ a2�(a)da < ∞, implying a finite
variance of the weighting approach.

A kernel function satisfying these properties is, for instance, the standard
normal density function as provided in figure 4.2, among other functions



such as the Epanechnikov or triangular kernels. What these kernels have in
common is that they assign a greater weight to observations with  being
close to zero and less (and, depending on the kernel function, possibly zero)
weights for values further from zero. Quite intuitively, the weight is greater
when Xi is close to x, however, it is the bandwidth h that determines by how
much the kernel weight depends on the absolute difference of Xi − x. Under
a larger bandwidth h, any  is closer to zero (and thus obtains a greater
weight) than under a smaller bandwidth. Therefore, weights are more
uniform and less dependent on Xi − x when h is large. In the extreme case
that h → ∞ (i.e., the bandwidth approaches infinity), each observation gets
exactly the same weight �(0), such that equation (4.17) simply corresponds
to the average outcome among the treated observations in the sample. In
contrast, for a bandwidth approaching zero (h → 0), only observations with
Xi virtually identical to x obtain a nonnegligible weight.

Figure 4.2
Standard normal kernel function.

Similar to parameter p in series estimation, the question is how to
appropriately choose h. A rather large bandwidth may entail a substantial
bias due to giving large weights to observations whose value Xi is far from



x. A rather small bandwidth may entail large variance due to giving
nonnegligible weight to only very few observations, which may cause
overfitting if the error terms εi of these few observations do not properly
average out to zero. Similar to determining popt in series estimation, we may
use leave-one-out cross-validation for finding the optimal bandwidth hopt

among a range of candidate values denoted by H:

where 1, −i, h(Xi) denotes the estimate of the conditional mean outcome for
observation i when applying bandwidth h, when leaving observation i out,
and using the remaining sample for estimation.

In the next step, we estimate the conditional mean μ1(Xi) for observation
i using the optimal bandwidth hopt, now including observation i. Formally,

As popt, the optimal bandwidth hopt generally depends on the sample size. It
tends to decrease as the sample size grows to reduce the bias related to
relying on observations with covariate values too far from x. However, h
should decrease at a slower pace than the growth of the sample size.
Otherwise, the variance would be too large relative to the bias, which would
not be optimal in terms of minimizing the MSE of 1(Xi); for instance, see,
Wand and Jones (1994). We can apply an analogous cross-validation
procedure to the estimation of μ0(X).

It is important to note that the cross-validation procedures outlined in
this chapter yield a choice of p or h, which is optimal for the estimation of
the conditional mean outcomes, but not necessarily for the estimation of the
CATE, ATE, or ATET—that is, the (average) differences of conditional
mean outcomes. Nevertheless, leave-one-out cross-validation constitutes a
feasible approach for picking adequate values for p or h in practice,
particularly as theoretically optimal rules for selecting the kernel bandwidth
in ATE evaluation might perform poorly in moderate samples; for instance,
see the discussion in Frölich (2005). However, it seems advisable to
investigate the sensitivity of the effect estimates with regard to various



values of p or h, such as by taking the cross-validation-based choices as
default values and multiplying and dividing them by a certain factor.

We may even combine kernel-based averaging and regression to obtain
local regression estimators of μ1(X) and μ0(X). Local linear regression, for
instance, consists of running a weighted linear regression of Yi on Xi within
treatment groups, where the weight of each observation corresponds to the
kernel function . While conventional linear regression (or OLS)
assigns the same importance to all observations, this approach gives more
weight to observations whose Xi is close to x when running the regression.
Considering the estimation of μ1(x), for instance, this approach permits
estimating regression coefficients that are specific to the covariate value x at
which the CATE is to be computed—that is, ( 1(x), X1, 1(x), …), to predict 
1(x). Local linear regression generally has a smaller bias than local constant
regression at the boundaries of the data—that is, close to the maximum or
minimum covariate values observed for X; for instance, see the discussion
in Frölich and Sperlich (2019).

It is worth mentioning that series regression and kernel-based estimates
of the conditional mean outcomes μ1(X) and μ0(X), as well as the CATE,
converge to the true values in the population at a slower pace than the fasted
possible convergence rate of , as discussed in section 3.3. Considering
kernel regression as described in equation (4.17), this occurs because the
method (for a sufficiently small bandwidth) strongly depends on a subset of
observations with covariate values close to the point of interest x, while
giving less weight to (and thus making less use of) observations further
away. This is in contrast to the linear regression model in equation (4.6),
which equally exploits observations in the entire sample, and therefore
converges at a rate of  (with n being the sample size), but at the price of
imposing linearity. Even under the slower convergence rate of series- and
kernel-based methods for estimation of the conditional mean outcomes and
the CATE, the estimation of the ATE and ATET can nevertheless be shown
to be -consistent under specific conditions. The intuition for this result is
that the ATE or ATET estimates are obtained by averaging over many
CATEs with different values of x. This may average out the estimation
errors in the CATEs occurring at specific values x and thus entail the
desirable property of -consistency.



Let us conclude this section by discussing a regression in R for assessing
the National Supported Work (NSW) Demonstration. The latter is a training
program in the US providing work experience for a period of up to 18
months to individuals with economic and social problems, with the aim to
increase their labor market performance. Our data, which are a subset of the
experimental sample in LaLonde (1986) and have previously been analysed
in Dehejia and Wahba (1999), consist of 185 treated and 260 nontreated
individuals who were assigned or not assigned to NSW, respectively. We
load the packages Matching by Sekhon (2011), which contains the data set
of interest; Jmisc by Chan (2014), which contains a function for demeaning
variables; lmtest; and sandwich using the library command. We then use the
load command to load the lalonde data with 445 observations and the
attach command to store each variable into an own R object.

Calling ?lalonde opens the help file, with a more detailed documentation
about the variables. This concerns the treatment (i.e., training participation),
the covariates like age, education, marital status, ethnicity, and previous
labor market performance; and the outcome, namely real earnings (i.e.,
earnings adjusted for inflation over time) after treatment in 1978.
Accordingly, we define the treatment, outcome, and covariates by D=treat,
Y=re78, and
X=cbind(age,educ,nodegr,married,black,hisp,re74,re75,u74,u75),
respectively, where cbind appends the covariates columnwise. We thus
assume that after making the treated and nontreated groups comparable in
terms of these covariates, they do not systematically differ in their potential
earnings with and without training.

We estimate the ATE based on the regression formulation in equation
(4.11), but without including higher-order terms of or interactions between
the covariates. This approach requires computing interactions between the
treatment and the demeaned covariates (Xi −X). To this end, we apply the
demean command to X and store the interaction with D in an R object
named DXdemeaned=D*demean(X). We then run an OLS regression of Y
on D, X, and DXdemeaned using the lm command, and store the output in
an object named ols. Finally, we use the coeftest command to investigate
the results. The R code for the various steps is provided in the box here.



Running the code yields the following output:

The result suggests that training participation increases average real
earnings by 1.5835e + 03 = 1583.5 US dollars (USD) in 1978 when running
our specification, and the ATE estimate is statistically significant at the 5
percent level, with a p-value of 0.0265 (or roughly 2.7 percent). We note
that this regression specification allows interaction effects of the treatment
and the covariates, and thus for some level of effect heterogeneity. Yet, it is
not fully flexible, as it contains neither higher-order terms (in particular of
the almost continuous variable age), nor interactions between covariates.
Such terms could be added as further regressors to verify whether the ATE
estimate is sensitive to an increased level of model flexibility, which would
seem to argue against our current specification.

4.3 Covariate Matching



A further class of methods that we may apply in the context of a selection-
on-observables framework are matching estimators, such as those
considered in Rosenbaum and Rubin (1983b, 1985); Heckman, Ichimura,
and Todd (1998); Heckman, Ichimura, Smith, and Todd (1998); Dehejia and
Wahba (1999); and Lechner, Miquel, and Wunsch (2011). The idea of
matching is to find and match treated and nontreated observations with
similar (or, ideally, identical) covariate values to create a sample of treated
and nontreated groups that are comparable in terms of covariate
distributions, just as it would be the case in a successful experiment. The
most basic form is pair or nearest-neighbor matching, implying that for a
specific observation in one treatment group, the most similar observation in
the other treatment group in terms of X is selected to form a match.

Let us, for instance, consider finding for each treated observation with D
= 1 the respective best matches among the nontreated observations with D =
0, as illustrated in figure 4.3. For the sake of simplicity, X consists of only a
single covariate, like age. Taking the mean difference in the outcomes of the
treated and matched nontreated samples then yields an estimate of the
ATET. Assuming that for each treated unit, there is a single nontreated unit
that is most similar in terms of X, the ATET estimate is formally defined as

Figure 4.3
Pair matching.

where ||Xj − Xi|| is a measure yet to be defined for the discrepancy or
distance between covariate vectors Xj and Xi and accordingly, minl:Dl=0||Xl −



Xi|| is the minimum distance among all nontreated observations compared to
the treated Xi. Here,  denotes the number of treated observations
in the sample. In an analogous way, we can estimate the ATENT, denoted
by ΔD=0 = E[Y(1) − Y (0)|D = 0], by finding the closest match among the
treated observations for each of the nontreated observations as follows:

where  is the number of nontreated observations.
The ATE can (by the law of total probability) be expressed as a weighted

average of ATET and ATENT, with weights depending on the shares of
treated and nontreated subjects in the population:

This suggests estimating the ATE by taking a weighted average of equations
(4.20) and (4.21) based on the shares of treated and nontreated observations
in the sample:

The pair-matching algorithms described so far are examples of matching
with replacement, implying that the same observation may serve multiple
times as a match. In equation (4.20), for instance, a nontreated observation
could be used as a match for several treated units, depending on how often
it is most comparable in terms of X. In contrast, matching without
replacement means that a nontreated unit serves as a match no more than
once. This may reduce the variance by forcibly relying on a larger number
of nontreated observations for matching rather than reusing the same
nontreated observation several times. But it also may increase the bias
because of not necessarily finding the most comparable match for each
treated observation due to a previous use of that match. Our subsequent
discussion will focus on matching with replacement. The latter may appear
preferable in applications where the number of potential matches (in this
example, the nontreated observations) is not substantially larger than the



number of reference observations for which matches are to be found (in this
example, the treated observations).

A crucial question for matching is how we should define the distance
metric ||Xj − Xi||—that is, based on which grounds we judge the covariate
values of two observations i and j to be similar or dissimilar. An obvious
(but naive) approach is to sum the squared differences in any of the
covariates and select the observation j with the smallest difference. This is
the intuition underlying the Euclidean distance, which is defined as

where the subscript k indexes a specific covariate and K is the total number
of covariates. The problem with this approach is that a specific difference
(e.g., of 1) is considered equally important for each covariate Xk,
independent of its distribution, particularly the range of values that the
variable can take and how dispersed these values are. This implies that a
difference of 1 in a binary variable like nationality (such as taking the value
1 for a native and 0 for a foreigner) contributes equally to the distance
metric as a difference of 1 in a continuous variable like income (e.g., 5,000
versus 5,001 USD). Arguably, a difference of 1 in the binary variable for
nationality is a qualitatively much bigger change than earning 1 USD more.
For this reason, a standardized version of the Euclidean distance appears
more appropriate, which takes into account the differences in covariate
distributions by normalizing any covariate difference between observations
j and i based on the inverse of the sample variance of the respective
covariate:

In addition to the variance of Xk, one may normalize covariate
differences by the inverse of Xk’s covariance with the remaining covariates
in X. In this case, the difference Xj, k − Xi, k gets a smaller importance (or less
weight) if Xk strongly correlates (i.e., shows a pattern that is strongly



associated) with other covariates. Then, finding good matches in terms of
the other covariates would generally imply a decent match in terms of Xk

too due to that correlation. Therefore, giving a smaller individual weight to
differences in Xk appears appropriate. For instance, it might be the case that
someone’s labor market experience strongly correlates with the level of
education. If the values in Xk are independent of (i.e., not associated with)
those of other covariates, however, finding good matches in terms of the
latter will generally not entail decent matching with respect to Xk. Then it
makes sense to give a greater weight to Xj, k − Xi, k to ensure a satisfactory
match quality for this covariate too.

The Mahalanobis distance metric incorporates inverse weighting by both
the variance and covariance and is formally defined as follows:

where for all cases in which k = l, it holds that (Xjk −Xik)(Xjl −Xil) = (Xjk −Xik)2

and . Several other distance metrics have been
proposed; see, for instance, the review in Zhao (2004), who also considers
metrics that depend on how well a covariate Xk predicts D, Y, or both to take
the strength of confounding associated with that covariate into account.
Furthermore, the genetic matching algorithm of Diamond and Sekhon
(2013) uses a weighted distance metric in which the weights are such that
predefined features (or moments) of the covariate distribution, like the
covariate means, are as similar as possible across treated and nontreated
matches.

A generalization of pair matching is one-to-many or 1:M matching,
where M is an integer larger than 1. It is based on matching to a treated
reference observation i several, namely M nontreated observations that are
closest in terms of X, in order to estimate μ0(Xi) based on the average
outcomes of these matches. Figure 4.4 provides an illustration of this
approach for the simplistic case of a single covariate X when M = 2. More
formally, let J(i) denote the set of M closest nontreated observations
matched to a treated reference observation i. Then, the 1:M matching
estimator of the ATET corresponds to



Figure 4.4
1:M matching.

where

One can show that this ATET estimator may be equivalently expressed
as

with Wi denoting the number of times that a nontreated observation is
matched to any treated observation. Similar to the choice of p or h for series
estimation or kernel regression, the optimal choice of M depends on the
data, such as the availability of similar comparison observations, and the
sample size. M should increase as the sample size grows to reduce the bias,
but at a slower pace than the growth of the sample size, which also reduces
the variance. In many empirical studies, however, M is chosen in an ad hoc
manner, without using methods aiming at an optimal selection, even though
cross-validation in principle could be applied for determining M. It appears
advisable to investigate the sensitivity of the effect estimates with regard to
various choices of M.



A further matching variant called radius or caliper matching does not fix
the number of matches, but it does define a maximum admissible level of
dissimilarity in X between matched treated and nontreated observations.
This level, for instance, may be based on thresholds for the distance metrics
in equation (4.25) or (4.26), denoted by ℬ. For any treated reference
observation i, we estimate μ0(Xi) as the average of all nontreated
observations whose distance metric ||Xj −Xi|| is less than or equal to a
positive number ℬ:

The more similar potential matches are available in the data, the more
comparison observations are actually matched. In contrast to 1:M matching,
radius matching does not determine the number of matches a priori, but it
does make this choice data-dependent. This may decrease the variance if
many similar comparison observations exist, without the large costs in
terms of bias that would be induced by using noncomparable matches.

As a modification of this idea, we can also use a kernel function to make
weights dependent on the magnitude of the distance metric:

Radius matching is conceptually closely related to the kernel approach
outlined in equation (4.17), which also permits computing 0(Xi) in order to
estimate, for instance, the ATET based on equation (4.27), an approach
known as kernel matching. One difference between radius matching based
on equation (4.30) or (4.31) and kernel matching based on equation (4.17),
however, is that ℬ is a scalar (i.e., a single number) that relates to an
aggregated distance metric for all covariates, while h in equation (4.17) is a
vector containing kernel bandwidths for each covariate. For the same
reason, � in equation (4.17) is typically a multiplicative (or product) kernel
function tailored to a vector of covariates.



It is worth noting that the various matching estimators can differ in their
large sample behavior. Abadie and Imbens (2006) show that pair or 1:M
matching do not necessarily converge with a rate of  to the true effect—
that is, they are not -consistent—if X contains more than one continuous
element (such as past earnings). This is due to the use of a fixed number of
matches, which does not optimally trade off the bias and variance of the
estimator. In contrast, kernel matching as discussed in Heckman, Ichimura,
and Todd (1998) may attain -consistency if the bandwidth h is
appropriately adapted to the sample size. Even in the case of -
consistency, pair or 1:M matching tends to have a higher asymptotic
variance than the most precise treatment effect estimators, which attain the
lowest possible variance under the same selection-on-observables
assumptions; see the discussion in Hahn (1998).

Furthermore, Abadie and Imbens (2008) demonstrate that bootstrapping
approaches as introduced in section 3.4 are inconsistent for estimating the
standard error (e.g., by replacing b in equation (3.48) with bootstrap-
sample-specific ATET estimates  based on matching). This is due to
the discontinuity of weights in pair and 1:M matching, implying that either
one or M matches get a positive weight when computing 0(Xi), while the
weight (or importance) of any other observation in the sample is zero.
Abadie and Imbens (2006), however, provide a consistent asymptotic
approximation of the estimator’s variance, which corresponds to the
following expression for the ATET:

where σ2(Di, Xi) = Var(Y |D = Di, X = Xi) is the conditional variance of the
outcome, given the treatment and the covariates.

The variance formula in equation (4.32) may be estimated by



where we may obtain the conditional variance estimate  based on
matching within the nontreated group (rather than across treated and
nontreated groups, as for effect estimation). Let us to this end denote by �i

the set of M nontreated observations that are closest to some nontreated
reference observation i. Then a matching-based, within-group conditional
variance estimator is given by

Even though this conditional variance estimate is inconsistent (due to a
fixed number of M), averaging this variance estimator over the n1 treated
observations in equation (4.33) averages out estimation errors and implies
that equation (4.33) is a consistent variance estimator of .

To improve the properties of pair or 1:M matching, we may combine the
estimators with a regression-based correction for the bias that comes from
not finding fully comparable matches for a reference observation, as
discussed in Rubin (1979) and Abadie and Imbens (2011). Taking the ATET
estimator such as in equation (4.27), estimation bias is rooted in the fact that
nontreated observations entering J(i) do typically not have exactly the same
X values as observation i. However, let us assume that we can well
approximate μ0(X) by a regression of Y on X among the nontreated
observations. In this case, we may correct for the bias due to Xj − Xi ≠ 0 by
the difference in the regression-based estimates for μ0(Xj) −μ0(Xi), with i
denoting the treated reference observation and j denoting a nontreated
observation in J(i). This suggests modifying equation (4.28) to



with  being an estimate obtained from regressing Y on X among the
nontreated.

The bias correction removes the bias without affecting the asymptotic
variance, and under specific conditions entails a -consistent and
asymptotically normal ATET estimator. This approach may nonnegligibly
reduce the bias even if the regression model for Y given X and D = 0 is
somewhat misspecified. The price is that the bias correction increases the
variance of ATET estimation in small samples due to estimating . We
note that in contrast to pair or 1:M matching without bias correction, kernel
matching or radius matching, based on nondiscontinuous, smooth kernel
weights as in equations (4.31) and (4.17), are less problematic in the context
of the application of bootstrap-based inference for computing standard
errors and confidence intervals. Also in this case, however, bias correction
may be beneficial in terms of bias reduction.

As an empirical illustration, let us implement pair matching in R by
reconsidering the NSW data set already analyzed at the end of section 4.2.
To this end, we load the Matching package using the library command and
follow the exact same steps as before for defining training participation as
treatment D, earnings outcome Y, and covariates X. We then run the Match
command for pair matching, in which the first argument corresponds to the
outcome, the second to the treatment, and the third to the covariates, and
save the output in a variable named pairmatching. Finally, we wrap the
latter using the summary command to investigate the results. The box here
provides the R code for each of the steps.

Running the R code yields the following output:



By default, the procedure provides an estimate (Estimate) of the ATET—
that is, the average effect of the training among participants, which amounts
to roughly 1,686 USD. By setting the estimand argument to “ATE,” such
that the command becomes Match(Y=Y, Tr=D, X=X, estimand = “ATE”),
we would instead obtain an estimate of the ATE. The second line of the
output, AI SE, yields the standard error, which is estimated based on the
formula in equation (4.33) and matching within the nontreated group as
outlined in equation (4.34). The third line T-stat yields the t-statistic, and
the fourth line p.val, the p-value. The ATET is statistically significantly
different to zero at the 10 percent level but not at the 5 percent level, as the
p-value of 0.0516 slightly exceeds 5 percent.

The Match command contains a range of options for matching
estimation. For instance, setting the argument BiasAdjust = TRUE performs
a bias correction as discussed in equation (4.35). Furthermore, setting M=3
(rather than using the default value of 1) performs 1:M matching with three
nearest neighbors. To see how these choices affect the estimated ATET, we
rerun the procedure with the following settings:

The ATET estimate is now moderately lower than before and again
statistically significant at the 10 percent level, such that our findings remain
quite robust when modifying the options for matching estimation:



4.4 Propensity Score Matching

A caveat of covariate matching and kernel or series regression that aim at
controlling for X nonparametrically—that is, in a flexible way without
imposing parametric assumptions like linearity as in equation (4.8)—is the
curse of dimensionality: As the number of covariates in X (i.e., the
dimension of X) and the number of possible values of the covariates (i.e.,
the support of X) grows, the probability of finding good matches with
similar values in all variables entering X decays rapidly in finite samples.
Instead of directly controlling for X, an alternative approach is to control for
the conditional treatment probability given the covariates, denoted by p(X)
= Pr(D = 1|X) and commonly referred to as the propensity score. This
follows from the propensity score’s balancing property demonstrated in
Rosenbaum and Rubin (1983b): Conditioning on p(X) equalizes, or
balances, the distribution of X across treatment groups such that the
covariates are independent of the treatment conditional on the propensity
score. Formally, X⊥D|p(X). Figure 4.5 provides a graphical intuition for
this result. As the propensity score is a function of X through which any
effect of X on D operates, controlling for p(X) blocks any impact of X on D
and thus, any confounding by X, which no longer jointly affects D and Y.



Figure 4.5
A causal graph including the propensity score (denoted by p).

For this reason, we can also identify the ATE and ATET when
controlling for the propensity score p(X) rather than X:

This suggests that we may estimate the treatment effects when substituting
the covariates X by an estimate of p(X) in any of the matching and
regression approaches previously discussed in sections 4.2 and 4.3. In
practice, propensity score matching appears to be more popular than
directly matching on covariates, as it implies matching on a single variable
—namely, an estimate of p(X)—rather than a possibly high-dimensional X:
that is, a large number of variables. Relatedly, propensity score matching
does not require a distance metric because we need not aggregate the
distances in several covariates. In pair matching, for instance, we simply
match to a treated reference observation the nontreated subject with the
most similar estimated propensity score, denoted by , as illustrated in
figure 4.6.



Figure 4.6
Propensity score matching.

At first glance, an advantage of propensity score matching appears to be
avoidance of the curse of dimensionality, as it is easier to match
observations that are similar in p(X) alone than in all elements of X. In fact,
different combinations of values in X could still yield similar propensity
scores. In empirical applications, however, the true propensity score is
typically unknown and needs to be estimated in the data prior to matching.
Here, the curse of dimensionality kicks back in with regard to the
estimation of p(X) if we apply nonparametric methods like series or kernel
regression. In practice, however, p(X) is frequently estimated by means of a
parametric binary choice model, which circumvents the curse of
dimensionality by imposing specific assumptions concerning the
association of X and D, rather than fully flexibly estimating it:

The model in equation (4.37) assumes that we may model D based on a
combination of a linear index α0 + αX1X1 + ⋯ + αXKXK and a nonlinear link
function Λ of that index. This implies that larger values of the index, due to
a higher level of the covariates education or work experience, entail a larger
probability (or propensity) to receive a treatment such as training. However,
how much the propensity score changes as a reaction to a shift in the index
depends on the initial value of the index.

Typically, Λ is either a normal or logistic distribution function, implying
a probit or logit model, respectively, for the propensity score. For either
model, p(X) is strictly between 0 and 1 (or 0 percent and 100 percent), as
theoretically required for a probability. Furthermore, for extremely positive



or negative indexes, a small change in the index only marginally affects the
propensity score, while for intermediate levels of the index, a small change
has a larger (and close to linear) impact on the propensity score. Intuitively,
for someone with a large index that has a training probability of close to 1,
an increase in a covariate like education can only marginally affect the
already very high training probability, which cannot go beyond 1. In
contrast, the impact of an increase in education is higher at intermediate
index values and treatment probabilities.

It is important to note that the choice of Λ directly restricts the
distribution of unobserved characteristics affecting the treatment decision.
Imposing the probit or logit model, unobservables are assumed to follow
the normal or logistic distribution, respectively. This implies that propensity
score estimation may be inconsistent when the treatment decision cannot be
characterized by a linear index of the observed covariates X, if the
unobserved characteristics do not follow a normal/logistic distribution, or
both. The avoidance of the curse of dimensionality, therefore, comes with
the cost of a smaller flexibility of the estimator due to stronger model
assumptions when compared to directly matching on X or using a
nonparametric propensity score estimate. As a compromise, somewhat
more flexible, semiparametric methods exist that maintain the linear index
α0 + αX1X1 + ⋯ + αXKXK, but put no distributional assumption on Λ; for
instance, see the methods proposed by Klein and Spady (1993) or Ichimura
(1993).

Parametric binary choice specifications like probit and logit models are
conventionally estimated by maximum likelihood estimation. The latter
determines the coefficient estimates  by solving the following
maximization problem based on the log likelihood function:

with  denoting candidate values for the coefficients. Intuitively,
maximum likelihood estimation aims at finding the coefficient values that
maximize the joint probabilities (i.e., the ensemble of individual propensity
scores) to obtain the treatment states actually observed in the sample. We



then compute the propensity score estimate  based on the following
prediction:

Matching on the estimated propensity score has a different variance than
matching directly on X, which in the case of the ATET can be either higher
or lower, as pointed out in Heckman, Ichimura, and Todd (1998). Abadie
and Imbens (2016) provide an asymptotic variance approximation for 1:M
propensity score matching, which appropriately accounts for uncertainty
due to propensity score estimation. In the case of ATET estimation, it
consists of the variance formula provided in equation (4.32) of section 4.3,
with X being replaced by p(X), plus a correction term for propensity score
estimation that involves the conditional covariance Cov(X, Y|D, p(X)). We
may estimate the latter covariance by matching within treatment groups in
analogy to the conditional variance estimator in equation (4.34). Ignoring
the correction term and implicitly assuming that the propensity score is
known generally entails a bias in the variance estimation of propensity
score matching for the evaluation of the ATET. For the case of ATE
estimation, it turns out that the bias is never negative, such that ignoring the
correction generally overestimates the true variance (at least in large
samples). An alternative inference method that takes the uncertainty due to
propensity score estimation into account is to estimate the variance based
on bootstrapping (see the discussion in section 3.4). In this case, we are
required to reestimate both the propensity score and the ATET in each
bootstrap sample to appropriately account for the variance related to either
estimation step.

Let us reconsider the NSW data already analyzed at the end of sections
4.2 and 4.3 for demonstrating the use of propensity matching in R. We
follow the same steps as before for loading the Matching package and the
lalonde data, as well as defining the treatment D, outcome Y, and covariates
X. However, an important difference is that we now estimate a propensity
score model. To this end, we apply the glm command, whose first argument
is (similar to the lm command) the regression formula (namely, D ∼ X), as
we estimate the treatment probability as a function of the covariates. A
further argument is family, which defines the kind of nonlinear regression to



be executed. Importantly, setting family=binomial assumes a logit model,
while family=binomial(probit) imposes a probit model.

Furthermore, as we are predominantly interested in the predicted
propensity scores rather than the coefficient estimates, we may directly
append to the glm(D ∼ X,family=binomial) command the extension $fitted.
The latter only retrieves the fitted values—that is, the estimated propensity
scores—from the logit regression. We store the propensity score estimates
in a variable named ps and use it as the sole covariate in the Match
command to perform propensity score matching and switch on the bias
correction: Match(Y =Y, Tr =D, X =ps, BiasAdjust = TRUE). We save the
output in a variable named psmatching and wrap it by the summary
command to investigate the results. The box here provides the R code for
each of the steps.

Running the R code yields the following output:

The estimated ATET (Estimate) suggests an average increase in annual
earnings of roughly 2,138 USD among training participants and is highly
statistically significant, as the p-value (p.val) of 0.007 is very low.
However, the standard error, t-statistic, and p-value are based on equation
(4.33), and for this reason, they do not take into account the estimation of
the propensity score. To improve this situation, we implement a bootstrap



approach for inference, in analogy to the empirical example at the end of
section 3.4. We therefore load the boot library and define a bootstrap
function named bs, in which we draw the bootstrap data, estimate the
propensity score using the glm command, and estimate the ATET using the
Match command. By appending $est to the latter, we exclusively retrieve
the ATET estimate, which we store in an R object named effect and return
by our bs function. We then use the data.frame command to append Y, D,
and X into a data matrix to be used for bootstrapping. We set a seed
(set.seed(1)) for the replicability of our results, run the bootstrap procedure
999 times, store the output in an R object named results, and call the latter:

Running the R code yields the following output:

The bootstrap-based standard error (std. error) of roughly 886 USD,
which accounts for propensity score estimation, is somewhat higher than
the previous standard error that relies on equation (4.33) and ignores
propensity score estimation. To assess statistical significance using the



bootstrap-based standard error, we compute the t-statistic and p-value
(similar to the empirical example at the end of section 3.4):

This yields the following result:

We find the ATET estimate to be statistically significant at the 5 percent
level, as the p-value amounts to roughly 1.58 percent.

4.5 Inverse Probability Weighting, Empirical Likelihood, and
Entropy Balancing

Matching and regression on the propensity score are not the only
approaches that use p(X) for treatment evaluation. We can alternatively
assess treatment effects by inverse probability weighting (IPW) going back
to Horvitz and Thompson (1952), which weights observations by the
inverse of the propensity score. Intuitively, observations with propensity
score values that are underrepresented or overrepresented in their treatment
groups relative to some target population, like the total population if the
ATE is of interest, are given more or less weight, respectively. After this
weighting step, treated and nontreated groups are comparable in terms of
the distribution of covariates X, such that we can properly assess treatment
effects under the selection-on-observables assumptions in expression (4.1).

More formally, IPW identifies the ATE in the population due to the
following relation:



where the second equality follows from probability theory, implying that
μ1(X) = E[Y·D|X]/p(X) and μ0(X) = E[Y· (1 −D)|X]/(1 −p(X)), and the third
from the law of iterated expectations. Similarly, the ATET can be shown to
be identified by

We may thus estimate treatment effects based on the sample versions (or
analogs) of IPW equations (4.40) and (4.41). Hirano, Imbens, and Ridder
(2003) consider this approach when using nonparametric series regression
for estimating the propensity score and show that it can attain the lowest
possible variance in large samples among all estimators relying on the
selection-on-observables assumptions. This variance property is known as
semiparametric efficiency. As an alternative approach, Ichimura and Linton
(2005) and Li, Racine, and Wooldridge (2009) discuss IPW with kernel-
based propensity score estimation. Practitioners, however, mostly rely on
logit or probit specifications, which is generally not semiparametrically
efficient; see Chen, Hong, and Tarozzi (2008). In any case, it is common
and recommended to use normalized sample versions (or sample analogs)
of the expressions in equations (4.40) and (4.41), which ensure that the
weights of observations within treatment groups add up to 1. Particularly in
smaller samples, this typically entails more accurate effect estimates; for
instance, see the findings in Busso, DiNardo, and McCrary (2014). For the
ATE, such a normalized estimator takes the form

where  and  normalize the weights such
that they add up to 1 within the treatment groups.

Compared to matching, IPW has the advantages that it is
computationally inexpensive (i.e., does not take a lot of computer time) and
does not require choosing tuning parameters (other than for nonparametric
propensity score estimation, if applied) such as the number of matches. On
the negative side, IPW estimates might be more sensitive to errors in
propensity scores that are very close to 1 or 0, which may drive up their



variance, especially in small samples, as discussed in Frölich (2004) and
Khan and Tamer (2010). Furthermore, IPW may be less robust (that is,
more prone to estimation errors) when using an incorrect model for the
propensity score than matching, which merely uses the score to match
treated and nontreated observations; for instance, see the evidence provided
in Waernbaum (2012).

A specific variant of IPW are empirical likelihood (EL) methods such as
those proposed in Graham, Pinto, and Egel (2012) and Imai and Ratkovic
(2014). These methods are based on modifying an initial propensity score
estimate, such as by changing the coefficients of a logit model, in an
iterative way until predefined features (or moments) of X like the covariate
means are maximally balanced, that is, as similar as possible across
treatment groups. We have encountered this balancing idea already in the
context of genetic matching in section 4.3. EL methods are based on the
intuition that after weighting by the inverse of the true propensity score
p(X) in the population, the covariates X, and thus any of their moments, are
balanced across treated and nontreated groups. For the ATET, this implies

where  denotes a function of X. For instance, for  or ,
equation (4.43) implies that the mean or variance of X, respectively, are
balanced across treatment groups after reweighting.

EL methods aim at enforcing the condition in equation (4.43), which
refers to the population, to hold in the sample:

where  is an adjusted version (through tweaking the coefficients) of the
initial propensity score estimate , which may not fully balance .
Using  instead of  in IPW thus guarantees that  is perfectly
balanced across treatment groups in the sample. By applying this approach,



we may avoid manually searching for propensity score specifications (e.g.,
by including interaction or higher-order terms of specific covariates) that
entail decent balancing. Besides IPW, we could use  in the context of
other estimators like propensity score matching. An approach related to EL
methods is entropy balancing (EB), as proposed in Hainmueller (2012). The
method iteratively modifies an initial (e.g., uniform) default weights until
the predefined balance criterion with regard to X is maximized under the
constraint that the weights must sum to 1 (and be nonnegative) in either
treatment group. In contrast to the previously mentioned EL approaches,
EB does not necessarily require an initial estimate of the propensity score
for finding the final weights.

EL and EB approaches aim at perfect covariate balance across treatment
groups to make treated and nontreated observations fully comparable,
which avoids biases due to dissimilarities in X across treatment groups. As
typically nothing is for free in statistics, however, this may come at the cost
of a higher variance, which also contributes to the overall error of the
estimator; see the discussion of the MSE in equation (3.34) in chapter 3. In
contrast to striving for a perfect covariate balance in , we may also trade
off balance (or bias) and variance in estimation when defining the weights.
In this spirit, Zubizarreta (2015) suggests a method for computing the
weights entailing the smallest estimation variance under the condition that
covariate differences across treatment groups do not exceed a specific level,
implying that covariate balance is approximately (rather than exactly)
satisfied.

Let us apply IPW in R to investigate the effect of mothers’ smoking
behavior during pregnancy on the birth weight of newborn children. To this
end, we consider a data set of 189 mothers and their newborns collected in
1986 at a medical center in the US and previously analyzed in Hosmer and
Lemeshow (2000). First, we load the causalweight package (which contains
IPW estimators) and the COUNT package by Hilbe (2016) (which contains
the data of interest) using the library command. Second, we load the lbw
data into the R workspace and store all variables in separate R objects using
the data and attach commands, respectively. We define smoke, a binary
treatment indicator for whether a mother smoked during pregnancy, as
treatment D, and bwt, a child’s birth weight in grams, as outcome Y. As
smoking behavior is most likely not random, we control for several



covariates that may jointly affect Y and D, which are attached columnwise
using the cbind command and stored in the R object X. The latter includes a
binary indicator for nonwhite or white ethnicity, race==1, as well as the
variables age, lwt, ptl, ht, ui, and ftv, which provide health-relevant
information on mother’s age, weight, and number of physician visits,
among other characteristics.

For replicability purposes, we set a seed of 1 using set.seed(1). We then
estimate the ATE by normalized IPW as outlined in equation (4.42) using
the treatweight command, whose first, second, and third arguments are the
outcome, treatment, and covariates, respectively. Furthermore, we set the
argument boot=999 to compute the standard error of the ATE estimate
based on 999 bootstrap samples. We note that the treatweight command
estimates the propensity scores by means of a probit model unless we
change it to a logit model by using the argument logit=TRUE. We store the
estimation output in an R object named ipw. The box here presents the R
code of each of the steps.

After running the code, we can access any output stored in ipw using the
$ sign, such as the ATE ipw$effect, standard error ipw$se, and p-value
ipw$pval:



Our results suggest that smoking during pregnancy on average reduces
the birth weight of newborns by almost 340 grams. The effect is highly
statistically significant, as the p-value (i.e., the error probability of
incorrectly rejecting zero ATE), amounts to only 0.003 (or 0.3 percent).

In a next step, we apply the EL approach suggested in Imai and Ratkovic
(2014) as an alternative method to estimate the ATE of smoking on birth
weight. To this end, we load the CBPS package, as well as the previously
seen lmtest and sandwich packages. We then apply the CBPS command. It
contains as the first argument the regression specification D ∼ X for
estimating the covariate-balancing weights based on iteratively modified
propensity scores when considering the covariate means as the balancing
criterion in equation (4.44). Furthermore, we set the argument ATT = 0 to
estimate the ATE rather than the ATET. We store the output in an R object
named cbps and can address the weights using the $ sign. In the next step,
we use the lm command to run a weighted regression of Y on D, in which
we weight observations by the previously estimated EL weights based on
including the argument weights=cbps$weights. Such a weighted regression
is in fact equivalent to IPW using EL-based propensity scores. We store the
output in an R object called results and wrap it by the coeftest command to
inspect the ATE estimate. The box here presents the R code of each of the
steps.

Running the code yields the following output:



The EL-based ATE estimate amounts to an average reduction in the birth
weight of roughly 332 grams, which is similar to the IPW-based result.
Furthermore, the estimated effect is highly statistically significant, with a p-
value of just 0.3 percent. As a word of caution, however, we need to point
out that this p-value does not take any uncertainty into account that comes
from the estimation of the modified propensity scores and the related
weights. This could be improved, however, by running a bootstrap
procedure in which we reestimate both the EL-based weights and the ATE
in each bootstrap sample.

4.6 Doubly Robust Methods

While equations (4.3) and (4.4) demonstrate the identification of treatment
effects based on conditional mean outcomes μ1(X) and μ0(X) and equations
(4.40) and (4.41) based on weighting using the propensity score p(X), we
may combine both approaches. In fact, the ATE (Δ) and ATET (ΔD=1) are
identified based on the following doubly robust (DR) expressions, which
use both propensity scores and conditional means, such as those discussed
in Robins, Rotnitzky, and Zhao (1994); Robins and Rotnitzky (1995); and
Hahn (1998):

where ϕ(X) is the efficient influence function.
Even though the expressions in equation (4.45) may seem more

complicated than the previously considered identification results based on
regression and IPW, they coincide with equations (4.3) and (4.4) in section
4.1, as well as equations (4.40) and (4.41) in section 4.5. This follows from
the fact that by the law of iterated expectations, some terms cancel out in
the first and second lines of equation (4.45), which yield the ATE and
ATET, respectively:



with the error term ε = Y− μD(X) and E[ε|D, X] = 0.
Despite the equivalence of DR, IPW, and outcome regression for

identifying causal effects in the population when assuming correct models
for the conditional mean outcomes and the propensity score μ1(X), μ0(X),
p(X), DR bears an attractive property when it comes to estimation, which
may be prone to misspecification. In fact, DR estimators based on the
sample versions of equation (4.45) with estimates for p(X), μ1(X), μ0(X),
henceforth referred to as plug-in parameters, are consistent if either the
conditional mean outcomes or the propensity scores are correctly specified.
This property is discussed in Robins, Mark, and Newey (1992) and Robins,
Rotnitzky, and Zhao (1995). Put differently, DR remains consistent if either
the propensity score or the conditional mean outcome models are incorrect.
In contrast, regression estimators solely rely on the correct specification of
μ1(X) and μ0(X), while IPW solely relies on the correct specification of p(X).
This makes DR estimation more robust to model misspecification (reducing
the threat of estimation error) than the other two methods, as suggested by
its name, because we now have two shots at getting either p(X) or μ1(X) and
μ0(X) right.

If we even manage to correctly set up (or parameterize) the models for
both the conditional mean outcomes (using a linear model, for instance) and
the propensity score (using a probit model, for instance), then DR
estimation is semiparametrically efficient: that is, it has the smallest
possible asymptotic variance. This is also the case if the plug-in parameters
p(X), μ1(X), μ0(X) are nonparametrically estimated by kernel or series
regression, as demonstrated by Cattaneo (2010). Furthermore, Rothe and
Firpo (2013) show that in small samples, nonparametric DR has a lower
bias and variance than either IPW, using a nonparametric propensity score,
or nonparametric (e.g., kernel-based) outcome regression. This implies that
for a limited sample size, the accuracy of the DR estimator is less
dependent on the accuracy of the estimated propensity scores and
conditional mean outcomes, as determined by the choice of the bandwidth h
in kernel regression. This better finite sample behavior makes DR
estimation attractive from a practical perspective, even when IPW and



outcome regression are consistent, meaning that they collapse to the true
effect in infinitely large samples.

Estimation based on equation (4.45) is, however, not the only approach
satisfying the DR property. Another method is targeted maximum
likelihood estimation (TMLE), as suggested by van der Laan and Rubin
(2006). It is based on first obtaining initial estimates of μ1(X) and μ0(X) by
regression and updating (or robustifying) the estimates in a second step by
regressing them on a function of an estimate of the propensity score p(X). If
the regression specifications for μ1(X), μ0(X) are incorrect while those for
p(X) is correct, the second step will correct for the biases of the first step. If,
however, the regression specifications for μ1(X), μ0(X) are correct while
those for p(X) is incorrect, then the second step will do no harm. For this
reason, TMLE is doubly robust. Yet another DR approach consists of
running a weighted version of an outcome regression as in equation (4.8),
with the weights corresponding to the IPW weights computed based on the
inverse of the propensity score. Therefore, all DR methods have in common
that they combine the estimation of conditional mean outcomes and
propensity scores to obtain an estimate of the causal effect of interest,
which fully exploits the information in the data concerning the associations
of X and D, as well as D, X and Y.

To illustrate DR estimation in R, let us reconsider the birth-weight data
already investigated at the end of section 4.5. To this end, we load the drgee
package by Zetterqvist and Sjölander (2015), which contains a DR
estimator of the ATE, and the COUNT package, which contains the lbw data
of interest. We follow the same steps as in section 4.5 in terms of defining
treatment D as a dummy for smoking during pregnancy, the birth-weight
outcome Y, and the covariates X. We then use the drgee command to
estimate the ATE. The argument oformula requires specifying a regression
model for the outcome as a function of the covariates, but without including
the treatment (even though the latter will be included in the model to be
estimated): oformula=formula(Y ∼ X). By default, a linear regression is
performed, which appears appropriate for our continuously distributed
birth-weight outcome, but it might be changed for other (e.g., binary)
outcome variables. The argument eformula requires specifying a propensity
score model for the treatment as a function of the covariates:



eformula=formula(D ∼ X). We estimate the propensity scores based on a
logit (rather than a linear) model by setting the argument elink=“logit”. We
save the output in an R object named dr, which we wrap by the summary
command to inspect the results. The box here presents the R code of each of
the steps.

Running the code yields the following output:

The ATE estimate suggests that mothers’ smoking during pregnancy
decreases the weight of newborns by 358 grams on average and is highly
statistically significant, even at the 0.1 percent level. This is qualitatively in
line with the findings based on the IPW and EL methods discussed at the
end of section 4.5.

4.7 Practical Issues: Common Support and Match Quality

After learning about several estimation methods in the selection-on-
observables framework, let us consider some practical issues that are
relevant for the accuracy of estimated causal effects—namely, common
support in samples and match quality. Common support implies that the
distributions of the propensity scores in the treated and nontreated groups of
our sample overlap in terms of the range of values. Common support,
however, does, not mean that the shape of the propensity score distribution



is exactly the same across treatment groups. In fact, the distribution
generally differs depending on the treatment state due to treatment selection
based on X. Only in experiments, where the random treatment assignment
does not depend on X, one would expect the propensity score distributions
to be the same across treated and nontreated groups.

We note that in the population, common support holds by one of the
assumptions in expression (4.1), requiring 0 < p(X) < 1. In a sample with a
limited (i.e., finite) number of observations used for treatment effect
estimation, however, common support is not automatically guaranteed by
this assumption. For the estimation of the ATET, common support implies
that for each treated observation, nontreated matches with similar
propensity scores exist in the data, while for the ATE, it also needs to hold
that for each nontreated observation, treated matches with similar
propensity scores exist. We can graphically check the satisfaction of
common support based on histograms or density plots of the propensity
scores separately for treated and nontreated observations in the sample to
see whether the range of propensity score values overlaps.

Strictly speaking, common support is violated whenever for any
reference observation, no observation in the other treatment group with
exactly the same propensity score is available. In practice, propensity scores
should be sufficiently similar, which requires defining a trimming criterion
based on which dissimilar observations may be discarded from the data to
enforce common support. However, if we discard observations, then effect
estimation might not be fully representative of the initial target population
(e.g., the treated). We thus sacrifice external validity, in the sense that we
only estimate the effect for a subpopulation of the target population with
common support in the data. On the other hand, doing so likely reduces
estimation bias within this subpopulation satisfying common support, thus
enhancing internal validity. Whenever we drop observations due to a lack of
common support, we should report their number or share relative to the
total sample in order to quantify how much we compromise on external
validity.

The literature on causal analysis has suggested several trimming criteria
for enforcing common support. One approach is to discard observations
with propensity score values that have a likelihood (or density) of or close
to zero in at least one treatment group—that is, which are either very rare or



do not occur at all in one of the treatment groups; see Heckman, Ichimura,
Smith, and Todd (1998). This requires estimating the density function of the
propensity score (e.g., by kernel density estimation; see Rosenblatt (1956)
and Parzen (1962)) and defining a threshold for the minimally required
density to keep from being dropped from the data. Choosing the threshold
may be data-driven—for instance, by defining it to be a specific quantile in
the distribution of estimated propensity score densities. Other criteria are
based on dropping observations with propensity score values that are higher
than a specific threshold value such that nontreated observations with such
high propensity scores unlikely occur in finite samples, or lower than a
value such that treated observations unlikely occur. For ATET estimation,
Dehejia and Wahba (1999) propose discarding all treated observations with
an estimated propensity score higher than the highest value among the
nontreated. For the ATE, one also discards nontreated observations with a
propensity score lower than the lowest value among the treated.

Crump, Hotz, Imbens, and Mitnik (2009) suggest discarding
observations with propensity scores close to zero or 1 in a way that
minimizes the variance of ATE estimation in the remaining sample under
specific assumptions. They find that dropping all observations with
propensity scores outside the interval [0.1, 0.9] (or [10 percent, 90 percent])
captures most of the variance reduction, which yields a simple rule of
thumb for analysts and researchers. However, by minimizing the variance,
we may compromise other goals such as ensuring external validity, which
requires us to retain as many observations as possible in the sample. For
this reason, practitioners typically also consider wider intervals, such as
[0.05, 0.95] or [0.01, 0.99].

In general, any of such trimming rules should be sample size dependent
to appropriately trade off bias (due to a loss of external validity) and
variance (due to propensity scores close to 1 or zero). That is, the larger the
sample size, the closer propensity scores may approach zero or 1 and still
be retained in the sample, as the likelihood of the existence of such extreme
propensity scores in the other treatment group increases with the sample
size. Only then, trimming approaches zero in large samples such that
external validity is maintained asymptotically: that is, as the sample size
approaches infinity. A trimming rule that obeys these considerations
consists of defining a maximum relative importance or weight (rather than a



maximum value of the propensity score) any observation may have within
its treatment group when estimating the treatment effect, such as discussed
in Huber, Lechner, and Wunsch (2013). In the IPW-based estimator of the
ATE provided in equation (4.42), for instance, the weight of a treated
observation is given by . We can easily verify that the

weight increases in . Fixing the maximum weight to 0.05 (or 5
percent), for instance, implies that we drop observations with a higher
contribution for the estimation of E[Y(1)] than this maximum weight from
the sample. Lechner and Strittmatter (2019) provide a comprehensive
overview of alternative common support criteria.

A further practical issue for any propensity score–based method
concerns the match quality: that is, the question of whether the estimated
propensity score successfully balances X across treatment groups, such as in
matched samples or after weighting covariates (rather than outcomes) by
IPW; see equation (4.44) in section 4.5. A poor balance (or match quality)
implies that neither matching nor IPW succeeded in generating treated and
nontreated groups that are comparable in X, entailing the threat of treatment
selection bias when estimating causal effects. Poor match quality may either
be due to a misspecified propensity score model, so we should consider a
more flexible model, or a matching algorithm creating unsatisfactory
matches, so we should use a different algorithm. A further possible reason
for poor match quality is a lack of common support, in which case we might
apply a trimming approach.

To check covariate balance, practitioners frequently consider hypothesis
tests, such as two-sample t-tests (the Welch test for samples with unequal
variances) to test for equality in means of each covariate k across matched
or IPW-weighted treated and nontreated groups (Welch 1947). The null
hypothesis to be tested is thus  , with m referring to
matched units. Formally, the test statistic of the two-sample t-test is

where  and  denote the means of covariate k in the groups of
matched (or weighted) treated (m1) and nontreated (m0) observations,



respectively.  and  denote the sample variances of Xk in the
matched treatment groups, while nm1 and nm0 denote the sample sizes of
matched treated and matched nontreated observations, respectively. This
corresponds to the heteroscedasticity-robust t-value obtained by a
regression of X on a constant and the treatment indicator among matched
observations.

Rather than testing for mean differences, we can test for differences
across the entire distribution of matched treated and nontreated
observations, such as by means of a Kolmogorov-Smirnov test. In the latter
case, the null hypothesis states that any covariate Xk has the same
distribution across matched treated and nontreated groups. Indeed,
successful balancing implies that the entire distribution of a covariate, not
just its mean, is equal across these groups, which is generally required for
consistent treatment effect estimation. A further test consists of regressing
Xk on a constant, treatment D, the estimated propensity score , higher-
order terms of , and interactions of  and D in the total (rather than
the matched) sample; see Smith and Todd (2005). If  balances the
covariates well, such that Xk and D are independent conditional on ,
then any coefficients on D or its interaction with  should be close to
zero. This can be verified by running a joint statistical test for the null
hypothesis that all those coefficients are equal to zero, such as a so-called F-
test.

It is important to note that running hypothesis tests like two-sample t-
tests for several covariates entails a multiple hypothesis testing problem.
The more hypothesis tests we conduct, the higher is the likelihood that one
of them spuriously rejects the null hypothesis in our sample, even when the
hypothesis is satisfied for every covariate in the population. Quite
intuitively, when running two sample t-tests for 100 covariates with a
significance level of α = 0.05, we would expect the tests to incorrectly
reject the null hypothesis in five cases, as we are willing to accept an error
probability of incorrect rejections of 5 percent. We need to keep this in
mind when interpreting the results, implying that a few rejections among a
large number of tests does not necessarily point to a violation of the
balancing property of the propensity score.



An alternative strategy to avoid such issues related to multiple
hypotheses consists of applying joint statistical tests for jointly checking
imbalances in all elements of X, such as an F-test. We can implement this
approach by estimating a system of equations consisting of several linear
regressions in which each Xk is regressed on a constant and D among
matched observations, and by testing whether the coefficients on D are
jointly zero. A different joint test consists of reestimating the propensity
score among the matched observations, only to obtain an estimate of Pr(D =
1|Xm), as suggested by Sianesi (2004). If the resulting pseudo-R2, which
analogously to R2 for linear models (see section 3.4) is a measure of the
goodness of fit for nonlinear models, is close to zero for the reestimated
propensity score, then X poorly predicts D after matching, which points to a
decent balance of X across treated and nontreated matches.

One issue that all hypothesis tests have in common is that the test
statistic underlying the rejection or nonrejection of the balancing hypothesis
is sample size dependent—for instance, a function of the number of
observations in the matched samples nm1 and nm0. A t-test will reject balance
under the slightest mean difference in covariates across treated and
nontreated matches if the sample grows to infinity, even if the imbalance is
negligible in terms of its magnitude (e.g., amounts to just 0.01 years in the
age variable). In contrast to classical hypotheses tests, the standardized
difference test suggested by Rosenbaum and Rubin (1985) is insensitive to
the sample size, at the cost of not providing a clear-cut rejection rule based
on p-values and levels of significance. Formally, the test statistic is given by

where  and  denote the variances of X in the original treated
and nontreated samples, respectively: that is, prior to matching (in contrast
to  and  in expression (4.47), which refer to the matched
subsamples only).

Unlike the t-statistic, expression (4.48) considers mean differences
relative to the variances in the original treated and untreated samples, but it
is not a function of the sample sizes nm1 and nm0. This implies that the



standardized difference is expectedly the same for small and large samples.
Rather than judging balance based on a p-value as in hypothesis tests, a
standardized absolute difference larger than a specific threshold such as 10
or 20 (or 0.1 and 0.2 when omitting multiplication by 100 in expression
(4.48)) may be considered as an indication of imbalance. There is, however,
admittedly some arbitrariness in the choice of the threshold, similar to
choosing significance levels in classical hypothesis tests. We may also test
the balance across all covariates jointly based on standardized differences
by averaging the absolute standardized difference of each covariate over all
covariates and verifying whether this average passes the threshold.

As a practical example in R, let us inspect the common support of the
propensity score in the birth-weight data considered in sections 4.5 and 4.6.
To this end, we load the COUNT package containing the lbw data, as well
as the kdensity package by Moss and Tveten (2020) for the kernel-based
estimation of a density function. The latter provides the distribution of a
variable based on the likelihood (or density) with which the variable takes
on specific values. We follow the same steps as in the last two sections in
terms of defining treatment D as smoking during pregnancy, the birth-
weight outcome Y, and the covariates X. As in section 4.4, we use the glm
command with the regression formula D ∼ X and the argument
family=binomial to estimate the treatment propensity score by a logit
model. We append the extension $fitted to the command and save the
predicted propensity scores in an R object called ps.

In the next step, we apply the kdensity command to the propensity scores
separately in the treated and nontreated groups (namely, ps[D==1] and
ps[D==0]), to estimate the densities of the propensity scores under either
treatment state. We save the estimated densities (i.e., the likelihoods that
specific propensity score values occur among the treated and nontreated
observations) in two R objects named psdens1 and psdens0. We use the
command par(mfrow=c(2,2)) to specify a figure in R that consists of 2 × 2
= 4 empty graphs. Finally, we fill the empty graphs with plots of our
propensity score densities under treatment and nontreatment, as well as
histograms of the propensity scores, as yet another approach for showing
the propensity score distributions. To this end, we first apply the plot
command to the estimated densities psdens1 and psdens0, respectively, and
then the hist command to the propensity scores in the treated and nontreated



groups, ps[D==1] and ps[D==0]. The box here provides the R code for
each of the steps.

Running the code yields the density plots and histograms of figure 4.7.
An inspection of the density functions in the upper graphs and the
histograms in the lower graphs reveals that the propensity scores are not
equally distributed across treatment groups (as would be the case in an
experiment with successful treatment randomization), but are on average
larger among the treated than among the nontreated. This points to
systematic differences in covariates across treated and nontreated groups.
Even though the propensity score distributions differ for D = 1 and D = 0,
common support appears close to being satisfied. Both among the treated
and nontreated observations, the propensity score estimates seem to cover a
similar range of values. An exception is the propensity score values around
0.8 (or 80 percent), which occur among the treated but are absent among the
nontreated. As a further check, we can take a look at the summary statistics
of the propensity score distributions by means of the summary command:



Figure 4.7
Propensity score distributions.

The minimum values of the propensity score are quite similar among
treated and nontreated observations and amount to 8.97 percent and 9.92
percent, respectively. There is a somewhat larger gap in the respective
maximum propensity scores of 95.81 percent versus 90.67 percent,
providing some scope for propensity score trimming. Nevertheless, our
common support check suggests that for most observations, we succeed in
finding matches with comparable propensity score estimates in the other
treatment group.

In our second example, we investigate the match quality after pair
matching for ATET estimation by inspecting the propensity score
distributions of matched treated and nontreated observations. As already



mentioned, a matching algorithm that performs well in terms of match
quality successfully balances the covariates across treatment states, and for
this reason, the propensity score distributions (because the propensity score
is a function of the covariates) as well. We load the MatchIt package by Ho,
Imai, King, and Stuart (2011) and run the matchit command with the
regression formula D ∼ X as the argument. The command first estimates
the propensity scores based on a logit regression, which are then used in a
second step to generate matched samples of treated and nontreated
observations for ATET estimation. The ATET is not directly computed by
the command, but it could be obtained by running a regression of the
outcome on the treatment in the matched sample. We save the results of the
matchit command in an R object named output. We wrap the latter using the
plot command, where we also use type=“hist” as the second argument, to
plot the propensity score distributions across treatment states before and
after matching by means of histograms. The box here contains the R code
for each of the steps.

Running the code generates the graphs in figure 4.8, where the left and
right histograms provide the propensity score distributions by the treatment
state before and after matching, respectively. These histograms show that
matching makes the propensity score distribution among the nontreated
substantially more similar to that of the treated when compared to the raw
sample prior to matching. Yet the match quality is not perfect, as some
distributional differences remain, such as for propensity scores close to 0.8
(or 80 percent).



Figure 4.8
Propensity score distributions before and after matching.

As an alternative to a graphical inspection, we next consider
standardized mean difference and hypothesis tests for assessing the
covariate balance before and after matching on the propensity score. To this
end, we load the Matching package and use the Match command (similar to
the example at the end of section 4.4) for pair matching on the propensity
score using the previously defined Y, D, and ps as the outcome, treatment,
and propensity score to match on, respectively. We store the results in an R
object called output1. Finally, we use the MatchBalance command to
investigate the balance of one of our covariates, ptl, which is the number of
false premature labors. To this end, we use the formula D ∼ ptl as the first
argument and match.out=output1 to feed in the output of the pair-matching
procedure:



Running the code yields the following output:

Even though the standardized mean difference (std mean diff ) of ptl
across treatment groups is smaller in absolute terms in the matched sample
(After Matching) than in the total sample (Before Matching), the value of
−21.878 nevertheless points to an unsatisfactorily high imbalance. And
even though neither the two-sample t-test (T-test) nor the Kolmogorov-
Smirnov test (KS Bootstrap p-value) rejects the null hypotheses of equality
in covariate means or distributions in the matched sample at conventional
levels of significance, the p-values are not much higher than 10 percent. Let
us see whether we can improve upon this rather unconvincing match quality
by applying the trimming rule of Dehejia and Wahba (1999) and discarding
all treated observations with an estimated propensity score greater than the
highest value among the nontreated. To this end, we set the argument
CommonSupport to TRUE in the Match command and rerun the previous
analysis:



This gives the following results:

We see that the common support restriction indeed improves the balance
of ptl across treatment groups in the matched sample, as the standardized
difference (std mean diff ) now only amounts to −8.566, which is below the
threshold of 10 in absolute terms. Furthermore, the p-values of the t-test (T-
test p-value) and the Kolmogorov-Smirnov test (KS Bootstrap p-value) are
now considerably higher than before. All in all, the match balance looks
pretty convincing for ptl after propensity score trimming. However, for
judging how much to compromise in terms of external validity, we should
check how many observations have been dropped due to the trimming rule.
To this end, we wrap out previous matching outputs with and without
trimming, output1 and output2, by the summary command:



We see that the ATETs (Estimate) both with and without trimming
propensity scores are quite similar, amounting to −134.55 and −135.16,
respectively. By comparing the number of observations (Original number of
observations) without trimming (189) to those with trimming (186) we
learn that the trimming rule discards only 3 observations from the sample.
This nevertheless considerably improves the match quality. We note that we
can repeat the previous procedures for any of the other covariates of
interest.

Let us now also consider a method for checking covariate balance in the
context of IPW-based estimation by reconsidering the treatweight command
in the causalweight package, as previously used in section 4.5. In fact, we
can investigate the mean difference in a covariate like ptl across treatment
groups after weighting by considering it as an outcome variable in the IPW
procedure. If the propensity score underlying the IPW estimator
successfully balances the covariates, then this mean difference should be
close to zero. We set a seed (set.seed(1)) prior to running the treatweight



command with ptl as the outcome, D as the treatment, and X as covariates
for probit-based propensity score estimation. We set the number of
bootstraps to 999 and save the results in an R object named ipw. Finally, we
investigate the estimated mean difference, ipw$effect, along with its p-
value, ipw$pval:

Running the code yields a mean difference of roughly − 0.049, with a p-
value of 0.284. We therefore do not find statistical evidence for a violation
of covariate balance across reweighted treatment groups. It is also worth
noting that the treatweight command contains a trimming rule (see the
argument trim). By default, the latter is set to 0.05, implying that
observations with rather extreme propensity scores of less than 5 percent or
more than 95 percent are discarded when estimating the ATE. Let us now
change this value to 10 percent, as considered by Crump, Hotz, Imbens, and
Mitnik (2009), by setting trim=0.1 in the treatweight command and saving
the output in the R object ipw. In addition to the estimated mean difference
in ptl across the reweighted treatment groups and its p-value, we now
inspect the number of discarded observations, which is provided in
ipw$ntrimmed:

This gives a mean difference of 0.044 and a p-value of 0.31, which again
does not point to a violation of covariate balance. Furthermore, only three
observations are discarded, such that external validity is hardly
compromised by this trimming rule.



4.8 Multivalued or Continuous Treatments and Distributional Effects

The selection-on-observables framework straightforwardly extends to
multivalued, discrete treatments, which may either reflect distinct
treatments, such as an information technology (IT) course or a sales
training, or an ordered amount of a specific treatment, such as one, two, or
three weeks of training. As in section 3.5, let D ∈{0, 1, 2, …, J}, where J
denotes the number of treatments that are nonzero. Under appropriate
selection-on-observable assumptions, we can identify treatment effects by
pairwise comparisons of any nonzero treatment with no treatment, or of two
nonzero treatment values, if the effect of one nonzero treatment relative to
another is of interest. More formally, let d and d′ denote the treatment
values to be compared (e.g., d = 2 and d′ = 0 or d = 2 and d′ = 1). Adapting
the assumptions in expression (4.1) for a binary D to hold for the pair of
values D = d and D = d′ of the multivalued treatment, one obtains the
following identifying assumptions (see Imbens (2000)):

Under the assumptions in expression (4.49), we can identify the ATE in
the total population when comparing D = d versus D = d′, as well as the
ATET when considering those with D = d as the treated population. To this
end, we simply have to adapt equations (4.3), (4.4), (4.36), (4.40), (4.41),
and (4.45), which permit assessing treatment effects based on regression,
matching, IPW, and DR, respectively, to the case of a nonbinary treatment.
Everywhere in these expressions, we replace D with the indicator function
I{D = d} and 1 − D with I{D = d′}, as well as the propensity score p(X) =
Pr(D = 1|X) with Pr(D = d|X) (i.e., the conditional probability of receiving
treatment value d), and 1 − p(X) with Pr(D = d′|X).

As in the binary treatment case, regression-, IPW-, or DR-based
treatment effect estimation with multivalued discrete treatments can be -
consistent and semiparametrically efficient if we estimate the plug-in
parameters (the conditional mean outcomes and propensity scores)
nonparametrically, such as by series or kernel regression, as discussed in
Cattaneo (2010). We may also apply matching approaches to assess the



causal effect of assigning treatment d versus d′, such as by matching
observations with D = d and D = d′ with similar estimates of both
propensity scores Pr(D = d|X) and Pr(D = d′|X); see Lechner (2001). We
note that if the conditions in expression (4.49) are satisfied for all possible
pairwise comparisons of treatment values, then the selection-on-observables
assumption holds for all potential outcomes: {Y(0), Y (1), Y (2), …, Y ( J)}
⊥D|X. Depending on the context, this may appear to be a stronger
restriction than imposing it only for a specific pair of treatment values;
therefore, we need to scrutinize its plausibility in the empirical application
at hand.

When D does not have discrete values like 0,1,2,…(or probability
masses) but is continuously distributed, such that it may take infinitely
many values like time spent training, the previously considered conditional
treatment probability Pr(D = d|X) turns into a conditional density function,
denoted by f(D = d|X), which is known as the generalized propensity score.
Replacing Pr(D = d|X) > 0 and Pr(D = d′|X) > 0 by f(D = d|X) > 0 and f(D =
d′|X) > 0 in expression (4.49) thus yields the set of conditions required for
assessing the effect of treatment dose d (e.g., 50 hours of training) versus d′
(e.g., 20 hours and 30 minutes of training). If these conditions hold for any
feasible treatment values, we may assess the full range of treatment doses.
In the spirit of equation (4.3) in section 4.1 for binary treatments, we can
estimate the causal effects of a continuous treatment based on a parametric
or nonparametric (e.g., kernel) regression of Y on D and X, as considered in
Flores (2007). This permits estimating the mean potential outcomes μd(x)
and μd′(x) to assess the average effects of discrete changes in the treatment:
that is, E[μd(x) − μd′(x)]. We may also estimate the derivatives  to assess
the marginal treatment effect  previously considered in section 3.5.

In analogy to equation (4.36) in section 4.4, we may alternatively regress
Y on D and an estimate of f(D|X) (Hirano and Imbens (2005)) or apply the
stratification approach of Imai and van Dyk (2004). We can also use IPW-
based methods in the spirit of equation (4.40) in section 4.5, which requires
replacing any indicator functions for discrete treatments, such as I{D = d},
with continuous weighting functions, as considered by Flores, Flores-
Lagunes, Gonzalez, and Neumann (2012) and Galvao and Wang (2015). Let
us to this end define the kernel weight �((D − d)/h)/h, where � is a



symmetric, second-order kernel function (e.g., the standard normal density
function provided in figure 4.2), which assigns more weight to values of D
the closer they are to d; and h is the bandwidth. Then, for instance, the ATE
in the population is identified by the following IPW expression:

where limh⟶0 means “as h goes to zero.” Related to equation (4.45) in
section 4.6, we can also estimate the effects of continuous treatments based
on DR approaches, as suggested by Kennedy, Ma, McHugh, and Small
(2017).

So far, our discussion of causal effects has focused on average effects in
a target population, particularly the ATE or the ATET of a binary or
multivalued treatment. However, the selection-on-observables framework
also extends to the evaluation of treatment effects on distributional features
of the outcome other than the mean, as already briefly acknowledged in
section 4.1. This follows from the fact that under our assumptions, we may
replace Y in the various identification results with a function of Y, so long as
the function satisfies some mild properties (like having a finite variance).
Replacing, for example, Y in equation (4.50) with I{Y≤ y}, with y being one
value of the outcome of interest, identifies a distributional treatment effect.
The latter tells us how the share of individuals whose outcome is less than
or equal to y changes in reaction to the treatment. More formally, let us
return to the case of a binary treatment and denote by FY(1)(y) = Pr(Y (1) < y)
and FY(0)(y) = Pr(Y (0) < y) the cumulative distribution functions of the
potential outcomes under treatment and nontreatment, respectively, assessed
at outcome value y.

Considering a monthly wage outcome of y = 4, 000 euros (EUR), FY(1)(y)
and FY(0)(y) correspond to the share of individuals earning no more than
4,000 EUR per month when receiving and not receiving the treatment,
respectively. Put differently, the cumulative distribution functions give the
ranks of a wage of y = 4, 000 in the potential outcome distributions under
treatment and nontreatment, respectively. For instance, FY(0)(4, 000) = 0.5
implies that under nontreatment, 50 percent of the population of interest
earn 4,000 EUR or less per month and therefore, individuals earning exactly



4,000 EUR obtain the median wage in the population. Accordingly, the
distributional treatment effect is defined as the difference in the potential
outcome distributions, FY(1)(y) − FY (0)(y). It corresponds to the effect of the
treatment on the share of individuals who obtain a wage smaller than or
equal to y = 4, 000 or, equivalently, on the rank of individuals earning y = 4,
000. The estimation of potential outcome distributions is discussed in such
sources as Donald and Hsu (2014); DiNardo, Fortin, and Lemieux (1996);
and Chernozhukov, Fernández-Val, and Melly (2013).

A related causal parameter is the quantile treatment effect (QTE). It
corresponds to the effect on subjects situated at a specific rank of the
potential outcome distributions, such as at the median or the first or third
quartile of the potential wage outcomes under treatment and nontreatment.
QTEs are useful to investigate effect heterogeneity across ranks of outcome,
especially when effects for specific subgroups in terms of outcome ranks
are particularly policy relevant. For instance, if we are interested in the
effect of an income support policy on household income, then the effect on
poorer households situated at lower ranks of the income distribution may
appear more relevant than the effect on high-income households.
Furthermore, investigating QTEs permits assessing whether a treatment
increases or decreases income inequality across outcome ranks, which is not
revealed when merely looking at the ATE.

The evaluation of QTEs generally requires continuously distributed
outcomes (e.g., a wage outcome taking many values) with a strictly
increasing distribution function for the outcome ranks of interest. The latter
condition rules out that there are ranges of outcome values for which no
observations exist (e.g., no observed wages between 2,000 and 2,500 EUR);
otherwise, quantiles are not uniquely defined, meaning that specific
outcome values cannot be uniquely attributed to a specific rank. If, for
instance, 20 percent of the population earn less than 2,000 EUR and there
are no individuals earning between 2,000 and 2,500 EUR, then the rank for
any of these values is equal to 0.2 (or 20 percent). Therefore, there is no
one-to-one correspondence between quantiles (i.e., outcome values) and
ranks, as required for a unique definition of QTEs.

To discuss the QTEs more formally, we note that the quantile function of
a potential outcome is defined as the inverse of its cumulative distribution



function assessed at a particular rank τ larger than zero and smaller than 1, 
 with the rank τ ∈(0, 1) (or 0 percent and 100 percent). The value d

in  is zero for the potential outcome under nontreatment and 1 for
that under treatment. Under selection-on-observables assumptions, for
instance, we may identify quantiles (i.e., values of potential outcomes at
specific ranks of interest) based on IPW when solving the following
minimization problem, as outlined in Firpo (2007):

Here, (Y− y) · (τ − I{Y − y < 0}) is a loss function tailored to the assessment
of quantiles (rather than means, as in the squared-error-based loss function
in equation (3.12) of section 3.2) and was first suggested by Koenker and
Bassett (1978). Then the QTE, denoted by

is obtained as the difference between the quantiles in equation (4.51) under
treatment (d = 1) and nontreatment (d = 0), assessed at the same rank τ.

Figure 4.9 provides a graphical illustration of the identification of the
QTE, based on plotting the ranks of the potential outcome distributions
under treatment and nontreatment on the y-axis and the respective quantiles
of an outcome (income) on the x-axis. A particular rank τ is associated with
specific outcome values  and . Therefore, the
difference y′−y corresponds to the QTE.



Figure 4.9
Illustration of the QTE.

To illustrate the evaluation of a continuously distributed treatment in R,
let us investigate the effect of expert ratings of video games on the sales of
those games in a data set originally collected and analyzed by Wittwer
(2020). To this end, we load the causalweight package, which contains the
games data of interest, as well as the npcausal package by Kennedy (2021),
which contains a DR method applicable to continuous treatments. The
package is available on GitHub, an online platform for building and
maintaining software. Accessing GitHub requires first installing and
loading the devtools package developed by Wickham, Hester, and Chang
(2021), and then running install github(“ehkennedy/npcausal”) to install
the npcausal package before loading it using the library command. We then
use the data command to load the games data, which contains missing
values in some variables for some observations. Even though this is
generally not the most appropriate way to deal with missing data problems,
we apply the na.omit command to the games data, which simply drops
observations with any missing information. We save the remaining sample
as an R object named gamesnomis and apply the attach command to store
all variables in own R objects.



Next, we define the variable metascore, a weighted average rating of a
video game by professional critics that ranges from 0 to 100, as continuous
treatment D and sales, which corresponds to the global sales in millions of a
video game until 2018, as outcome Y. Furthermore, we use the cbind
command to define the year of a game’s release, the userscore providing
the average user rating, and genre==“Action”, a dummy variable for the
action genre, as covariates X. We then feed the outcome, treatment, and
control variables into the ctseff command, a DR approach that estimates
outcome and generalized propensity score models nonparametrically by an
ensemble (i.e., combination) of machine learning methods; see section (5.2)
in chapter 5 for further details on causal machine learning. We also set the
argument bw.seq=seq(from=1,to=5,by=0.5) to find the optimal treatment
kernel bandwidth to be used in the ctseff command by cross-validation
based on iterating over bandwidth values 1, 1.5, …, 4.5, 5. We store the
output in an object named results and wrap the latter by the plot.ctseff
command to plot the regression function: that is, the estimate of the mean
potential outcome E[Y(d)] as a function of treatment value d. The box here
provides the R code for each of the steps.

Running the code yields the graph in figure 4.10, which suggests that the
association between the average sales of video games and the rating of
professional critics is highly nonlinear. The initially mostly flat regression
line implies that marginal increases in the rating have a limited effect on
sales up to a treatment value of d = 90. For larger treatment values,
however, the outcome-treatment-association becomes much steeper,



pointing to a substantial marginal effect of the rating on sales. Of course,
these conclusions are conditional on the satisfaction of the selection-on-
observables assumptions, given our covariates X. The graph also shows the
95 percent confidence intervals (dashed lines), which are mostly quite
narrow, suggesting that the mean potential outcome as a function of the
treatment is quite precisely estimated.

Figure 4.10
Mean potential outcome under a continuous treatment.

As a second empirical example based on the same data, let us consider
the estimation of the QTE using the qte package. To this end, we create a
binary treatment indicator D for a high average rating of a video game by
professional critics, which takes the value 1 if the continuous treatment
metascore is greater than 75 and zero otherwise. Using the data.frame
command, we generate a data set named dat, which contains outcome Y,
treatment D, and covariates X. In the next step, we apply the ci.qte
command, an IPW estimator of QTEs based on equation (4.51). Its first
argument is a regression like formula of the outcome and the treatment, Y ∼
D, followed by the covariates, x=X, and the data set, data=dat. We store the
output in an object named QTE and wrap the latter by the ggqte command
to plot the QTEs of our high rating indicator on sales across various ranks τ
in the outcome distribution along with confidence intervals. The R code is
provided in the box here.



Running the code gives the graph in figure 4.11. The effects of obtaining
a high as opposed to low expert rating on sales are generally positive and
statistically significant (as the dashed confidence intervals do not include
zero), but substantially larger at higher ranks of the sales distribution than at
lower ones.

Figure 4.11
QTEs.

4.9 Dynamic Treatment Effects

A further conceptual extension of the standard treatment framework is the
analysis of sequences of treatments or dynamic treatment effects, as
discussed in Robins (1986) and Robins, Hernan, and Brumback (2000). In
this case, we are interested in the evaluation of several discrete treatments



assigned over several time periods, like consecutive training programs (e.g.,
a language course followed by an IT course), medical interventions (e.g., a
surgery followed by rehabilitation), or sales promotions (e.g., a marketing
campaign followed by a price discount). Such a causal analysis of distinct
sequences of treatments requires us to control for confounder that jointly
affect the outcome and the various treatments assessed in multiple periods.
One approach is to sequentially impose selection-on-observables
assumptions across all treatment periods, which implies that the treatment
in each period is as good as randomly assigned, conditional on past
treatment assignments, past outcomes, and the history of observed
covariates up to the respective treatment assignment.

To discuss the dynamic treatment framework more formally, let us for
the sake of simplicity consider just two sequential treatments and denote by
Dt and Yt the treatment and the outcome, respectively, in time period T = t.
Therefore, D1 and D2 are the treatments in the first and second periods,
respectively, and may take values d1, d2 ∈{0, 1, …, J}, with 0 indicating no
treatment and 1, …, J the various treatment choices (e.g., the various
training programs), as in section 4.8. Let us denote by Y2 the outcome (e.g.,
wages), which is measured in the second period after the realization of
treatment sequence D1 and D2. Furthermore, d2 denotes a specific treatment
sequence (d1, d2), with d1, d2 ∈{0, 1, …, J} (e.g., a language course
followed by IT training) of the treatment variables D2 = (D1, D2).
Accordingly, Y2(d2) denotes the potential outcome hypothetically realized
when the treatment values are set to sequence d2. We may then define the
average treatment effect of two distinct treatment sequences d2 versus  as

An example is the ATE of a sequence of two distinct treatments (e.g., a
language course followed by IT training) versus no training in either period.
In this case, d2 = (1, 2) (with 1 =language course and 2 =IT training) and 

.
To formalize the sequential selection-on-observables assumptions, let us

denote by Xt the observed covariates in period T = t. Here, t equals 0 during
the pretreatment period, 1 during the period of the first treatment, and 2
during the period of the second treatment. Accordingly, X0 consists of



pretreatment characteristics measured (at least shortly) prior to the first
treatment participation D1. X1 consists of covariates measured during or
even at the end of the first treatment period but (at least shortly) prior to the
second treatment D2 and may include intermediate outcomes observed in
period 1, denoted by Y1 (e.g., the wages just after the first treatment).
Furthermore, X1 may be influenced by both D1 and X0, such as the baseline
wages prior to the first training, as well as training participation in the first
period may affect the wages at the end of the first period. Covariates in a
particular period, therefore, may be affected by previous covariates and
treatments, implying that confounding may be dynamic in the sense that the
assessment of causal effects requires controlling for time-varying covariates
rather than for baseline characteristics (measured prior to the first
treatment) alone.

In terms of identifying conditions, we impose a sequential version of the
selection-on-observables assumptions as follows for any treatment sequence
d2 of interest:

The first condition in the first line of expression (4.54) invokes the
conditional independence of the treatment in the first period D1 and the
potential outcomes Y2(d2), given X0. It rules out unobserved confounders
jointly affecting D1 and Y2(d2) conditional on X0 in the same spirit as
expression (4.1). The second condition in the first line invokes conditional
independence of the second treatment D2 given the first treatment D1 and
the (history of) covariates X0 and X1. It rules out unobserved confounders
jointly affecting D2 and Y2(d2), conditional on D1, X0, and X1. The second
line of expression (4.54) imposes common support, meaning that the
treatment in each period is not a deterministic function of the observables in
the conditioning set, which rules out conditional treatment probabilities (or
propensity scores) of 0 or 1. This implies that conditional on each value of
the observables occuring in the population, subjects with distinct treatment
assignments {0, 1, …, J} exist.

Figure 4.12 provides a causal graph that illustrates the implications of
equation (4.54), with arrows representing causal effects. Each of D1, D2, and



Y2 might be causally affected by different sets of unobservables not
displayed in figure 4.12, but none of these sets of unobservables may jointly
affect D1 and Y2, given X0, or D2 and Y2, given D1, X0, and X1. We also note
that the second treatment, D2, is allowed to depend on the first treatment,
D1. The likelihood of participating in an IT course, for instance, might differ
across individuals attending and not attending a language course in the first
period.

Figure 4.12
Sequential conditional independence with posttreatment confounders.

In the spirit of equation (4.3) for treatment evaluation with a single
treatment period, we can under the conditions in expression (4.54) assess
dynamic treatment effects based on nested conditional means, which may
be estimated by nested regressions or matching estimations; for example,
see Lechner and Miquel (2010) and Blackwell and Strezhnev (2020):

where d2 = (d1, d2) and  denote distinct treatment sequences.
Alternatively, we may assess the effects based on IPW (see section 4.5)
based on sequential propensity scores estimated for each treatment period,
as in Lechner (2009)):



where pd1(X0) = Pr(D1 = d1|X0) and pd2(D1, X0, X1) = Pr(D2 = d2|D1, X0, X1) are
shorthand notations for the propensity scores in the two periods.

Finally, and in the spirit of section 4.6, we can use a DR approach, which
is based on both outcome regression and propensity scores for evaluating
the ATE of treatment sequences, as discussed by Robins (2000) and Tran et
al. (2019):

with μY2(d2, X0, X1) = E[Y2|D2 = d2, X0, X1] and νY2(d2, X0) = E[E[Y2|D2 = d2,
X0, X1]|D1 = d1, X0] being shorthand notations for the (nested) conditional
mean outcomes.

It is worth noting that our evaluation problem simplifies somewhat if the
second treatment, D2, is conditionally independent of the potential outcomes
given the pretreatment variables X0 and treatment D1, implying that X1 is not
required to control for confounders jointly affecting the second treatment
and the outcome. In this case, assumption Y2(d2)⊥D2|D1, X0, X1 in
expression (4.54) may be replaced by the stronger condition Y2(d2)⊥D2|D1,
X0, which eases data requirements as it does not rely on information on
posttreatment covariates X1. Figure 4.13 provides a graphical illustration of
the causal associations that satisfy this set of assumptions.



Figure 4.13
Sequential conditional independence without posttreatment confounders.

Accordingly, controlling for X1 is not required in the propensity scores
and conditional mean outcomes of any expression identifying the ATE 

. For instance, ψd2 in equation (4.57) then simplifies to

Intuitively, this implies that the second treatment is as good as being
randomly assigned, given the first treatment and the baseline covariates.
The evaluation problem in this case is equivalent to the evaluation of
multivalued discrete treatments as discussed in section 4.8, with specific
combinations of D1 and D2 defining the multivalued treatments.

However, this framework might appear unrealistic if there is a large time
lag between the first and second treatments, which favors dynamic
confounding. If the second treatment corresponds to a training program that
takes place several years after a first training program, it appears likely that
individual characteristics like health and labor market behavior that also
affect the outcome (e.g., wages) change between the first and second
treatments and therefore need to be controlled for. For this reason, we need
to scrutinize the plausibility of dynamic, time-varying confounders when
deciding whether we control only for baseline covariates or also take into
account covariates in later time periods.

To illustrate the estimation of dynamic treatment effects in R, let us
reconsider the Job Corps sample introduced at the end of section 3.1. To
this end, we load the causalweight package and the JC data. The latter
contains binary indicators for training participation in the first and second
years after the start of the Job Corps program in columns 37 and 38,



respectively. Accordingly, we define the treatment in the first and second
periods as D1=JC[,37] and D2=JC[,38], respectively. That is, we use the
second argument (right of the comma) in the square brackets to select the
column in the data that contains the treatment of interest, while leaving the
first argument (left of the comma) blank, such that all rows (or
observations) are included. Columns 2 to 29 contain a range of
characteristics measured prior to the first treatment (including gender, age,
ethnicity, education, family background, and health), based on which we
generate the baseline covariates X0=JC[,2:29]. Using the colon in the
second argument of the square brackets permits us to choose the range of
columns (2:29) to be included in the covariates. Accordingly, columns 30 to
36 contain covariates (on labor market participation and health) that are
measured after the assignment of the first treatment but prior to the second
treatment, defined as X1=JC[,30:36]. Finally, our outcome of interest is the
weekly earnings in the fourth year, provided in column 44, and for this
reason, we generate the R object Y2=JC[,44].

After defining the covariates, treatments, and outcomes in the various
time periods, we set a seed (set.seed(1)) and feed the variables into the
dyntreatDML command, a DR approach for estimating the causal effects of
treatment sequences based on equation (4.57) under the assumptions in
expression (4.54). By default, the method estimates the ATE of being
treated in both periods (D1 = 1, D2 = 1) versus no treatment in either period
(D1 = 0, D2 = 0). It is also worth mentioning that the conditional mean
outcomes and treatment propensity scores are based on lasso regression, a
machine learning approach discussed in section 5.2 in chapter 5. We store
the results in an object named output and inspect the ATE estimate, the
standard error, and the p-value by calling output$effect, output$se, and
output$pval, respectively. The box here provides the R code for each of the
steps.



The estimate suggests that the ATE E[Y(1, 1) − Y (0, 0)] on weekly
earnings in the fourth year amounts to 42.84 USD. The standard error of
5.07 is relatively small and the p-value is very close to zero, such that we
can safely reject the null hypothesis of a zero ATE at any conventional level
of statistical significance. We could easily change the default setting of
comparing the sequences of being treated in both periods versus no
treatment in either period. Setting, for instance, the arguments d1treat=0,
d2treat=1, d1control=1, and d2control=0 in the dyntreatDML command
would estimate the ATE E[Y(0, 1) − Y (1, 0)]: that is, the effect of exclusive
treatment in the later period versus exclusive treatment in the earlier period.

4.10 Causal Mechanisms (Mediation Analysis)

Causal mediation analysis assesses the causal mechanisms through which
the treatment affects the outcome, and it has a causal structure that appears
quite related to that of dynamic treatment evaluation, as discussed in section
4.9. More concisely, mediation analysis aims at disentangling a total
treatment effect into one or several indirect effects, operating through one
or several intermediate variables that are commonly referred to as
mediators, as well as a direct effect, which includes any causal mechanisms
not operating through the mediators of interest. As an example, let us
reconsider the effect on employment or earnings of a sequence of training
programs such as job application training and an IT course. Here, we could
be interested in the direct effect of the job application training net of
participation in the IT course by setting the latter to zero. This implies
assessing the treatment effect  with sequences d2 = (1, 0) and 



, a parameter known as the controlled direct effect; see, for
instance, Pearl (2001). That is, the net effect of D1 is obtained by
controlling for the mediator D2, namely by setting it to the same value for
everyone in the population (in our example, to zero).

However, the direct controlled effect can also be assessed when setting
D2 to a nonzero value (e.g., participation in an IT course). The sizes of the
direct effects might generally differ across the values of D2 if there are
interaction effects between D1 and D2, such as if the job application training
is particularly effective for individuals who also take an IT course. We can
evaluate such controlled direct effects based on the same sets of
assumptions as discussed in section 4.9.

Besides controlled direct effects, causal mediation analysis is also
concerned with the evaluation of natural direct or indirect effects; for
instance, see Robins and Greenland (1992). In this case, the direct effect of
D1, conditional on that value of the mediator D2 that is naturally chosen as a
reaction to D1 (rather than being set to the same value for all, as for the
controlled direct effect), is of interest, as well as the indirect effect
operating through the choice of D2 in reaction to D1. For instance, some
individuals might participate in an IT course after participating in job
application training, while others might not. Therefore, the naturally chosen
value of D2 under a specific value of D1 may vary across individuals (e.g.,
as a function of their preferences or other characteristics). Depending on
whether specific values of D2 can and should be imposed for everyone or
subjects are permitted to choose D2 in response to D1, either controlled or
natural effects may appear more relevant in a given empirical context.

To formalize the evaluation of natural direct and indirect effects, let us
for the moment assume a binary D1 and extend the potential outcome
notation to the mediator D2, such that D2(d1) denotes the potential mediator
as a function of the value d1 ∈{0, 1}. Furthermore, we denote by E[Y2(d1,
D2(d1′)] the potential outcome conditional on D1 = d1 and the potential
mediator under D1 = d1′, with treatment values d1, d1′∈{0, 1}. Using this
notation, the total ATE of D1 on Y2 corresponds to



To separate the natural direct effect of D1 from its indirect effect
operating via D2, we add and subtract either E[Y2(0, D2(1))] or E[Y2(1,
D2(0))] on the right side of equation (4.59):

Here, θ(1) and θ(0) correspond to the natural direct effects of D1 (i.e., net of
indirect effect of D1 on Y2 through its impact on D2) when setting the
potential mediator to its value under either d1 = 1 or d1 = 0, respectively.
Further, δ(1) and δ(0) are the natural indirect effects: that is, the difference
in the mean potential outcomes due to a D1-induced shift of the mediator
from D2(0) to D2(1), while keeping D1 fixed at either 1 or 0, respectively. As
for the controlled direct effect, θ(1) and θ(0) might differ if there are
interaction effects between D1 and D2. The same argument applies to δ(1)
and δ(0). Equation (4.60) also highlights that the total effect of D1 is the
sum of the natural direct and indirect effects defined based on opposite
treatment states: that is, either θ(1) + δ(0) or θ(0) + δ(1). This implies that
interaction effects between D1 and D2 are either accounted for in the direct
or the indirect effect, but not both at the same time.

Furthermore, it is worth noting that Y2(1, D2(0)) and Y2(0, D2(1)) are
fundamentally counterfactual, in the sense that they are never observed for
any subject, because mediator and outcome values can only be observed for
the same (f)actual treatment, rather than for opposite treatment states. For
this reason, the identification of natural direct and indirect effects hinges on
stronger assumptions than what is required for controlled or dynamic
treatment effects. A first additional assumption is that D1 must be
conditionally independent of the potential mediators (rather than of the
potential outcomes only) such that no unobservables jointly affect D1 and
D2, given X0: D2(d1)⊥D1|X0. Second, Avin, Shpitser, and Pearl (2005) show
that the nonparametric identification of natural direct and indirect effects
requires that the baseline covariates X0 and the treatment D1 be sufficient to
control for confounders of D2 and Y2. This implies that conditioning on



covariates X1, which are possibly affected by D1, is not necessary, a scenario
also discussed at the end of section 4.9.

For the sake of generality, let us now allow for a multivalued, discrete
treatment (e.g., alternative training programs) taking values {0, 1, …, J} as
already considered for the evaluation of dynamic treatment effects.
Incorporating our previous considerations entails the following set of
assumptions for evaluating natural direct and indirect effects:

The causal graph provided in figure 4.13 satisfies the assumptions in
expression (4.61) under the condition that any unobserved characteristics
omitted from the graph do not jointly affect two out of the three variables,
D1, D2, and Y2.

Similar to previously considered causal effects, we may identify the
mean potential outcomes that are required for the computation of natural
direct and indirect effects in equation (4.60) based on alternative strategies.
A first approach relies on nested conditional mean outcomes, which might
be estimated by matching or regression estimators; for instance, see Imai,
Keele, and Yamamoto (2010):

where μY2(D1, D2, X0) = E[Y2|D1, D2, X0] denotes the conditional mean
outcome, and d1, d1′ denote specific values of the first treatment. A second
strategy assesses the mean potential outcomes by IPW (see, e.g., Hong
(2010)):

where pd2(D1, X0) = Pr(D2 = d2|D1, X0) denotes the propensity score of the
mediator, which is a conditional density in the case of a continuous
mediator.



Finally, DR identification combines IPW with conditional mean
outcomes, as discussed by Tchetgen Tchetgen and Shpitser (2012):

It is also worth noting that by an application of Bayes’ law, the mediator
probability/density pd2(D1, X0) appearing in equations (4.63) and (4.64) can
be avoided by instead including another treatment propensity score pd1(D2,
X0) = Pr(D1 = d1|D2, X0). As discussed in Huber (2014a), equation (4.63) is
equivalent to

From a practical perspective, relying on the estimation of pd1(D2, X0) rather
than pD2(d1, X0) might be preferred if the mediator is continuously
distributed and/or consists of several variables, such that the estimation of
pD2(d1, X0) (e.g., by kernel methods) might be cumbersome.

Assuming that the mediator is as good as being randomly assigned when
controlling for treatment D1 and baseline covariates X0 alone appears to be a
strong assumption. In many applications, it may seem more plausible that
we also need to control for posttreatment covariates X1, as discussed in
section 4.9. This implies that assumption Y2(d2)⊥D2|D1, X0 in expression
(4.61) is to be replaced by Y2(d2)⊥D2|D1, X0, X1. However, the latter is not
sufficient for the nonparametric identification of natural direct and indirect
effects, which therefore requires additional assumptions, very much in
contrast to controlled direct or dynamic treatment effects. An additional
restriction is ruling out confounders that jointly affect (i) D1 and X1, given
X0, or (ii) X1 and D2 or Y2, given D1, X0. This assumption is satisfied in
figure 4.12, where assumably no unobservables jointly affect D1 and X1, X1



and D2, or X1 and Y2. Under this condition, we can identify the path-wise (or
partial indirect) effect of D1 on Y2 directly operating via D2, i.e., D1 → D2 →
Y2, for instance based on IPW, see Huber (2014a), which for a binary
treatment corresponds to the following expression:

with δp(d1) denoting the pathwise effect of D1 → D2 → Y2.
However, δp(d1) represents only a partial indirect effect because it omits

any indirect impact that operates via X1 (namely, the path D1 → X1 → D2 →
Y2) and for this reason, it does not coincide with the natural indirect effect
δ(d1). To identify the arguably more interesting full natural indirect effect
(along with the corresponding natural direct effect, such that both add up to
the ATE), we would need to impose even further assumptions. One
possibility is to rule out interaction effects between D1 and D2, such that the
effect of the treatment does not depend on that of the mediator and vice
versa; see, for instance, Robins (2003). For a binary treatment, this implies
that Y(1, m) − Y (0, m) = Y (1, m′) − Y (0, m′) for any distinct mediator
values m ≠ m′. Such an approach, however, may appear unattractive in
many empirical contexts, as it severely restricts effect heterogeneity.
Improving on the latter situation, Imai and Yamamoto (2013) demonstrate
that natural effects can also be identified under a treatment-mediator
interaction effect, so long as the latter is homogeneous (i.e., the same) for
different subjects, which is admittedly not an uncontroversial restriction
either.

Alternatively, Tchetgen Tchetgen and VanderWeele (2014) show that we
can assess δ(d) and θ(d) if the average interaction effects of X1 and D2 on Y2

amount to zero, which cannot be taken for granted either. Yet another,
arguably very strong, restriction is that potential values of X1 under
treatment and nontreatment are statistically independent, or that the form of
their statistical association is known; see Robins and Richardson (2010) and
Albert and Nelson (2011). Finally, Xia and Chan (2021) provide a DR
approach under the assumption that conditional on X0, the average effects



operating via the causal paths D1 → Y2 and D1 → X1 → Y2 are homogeneous
across values of the potential mediator under nontreatment M(0). While
some of these additional assumptions required for assessing full rather than
partial natural direct and indirect effects may appear more or less attractive
than others, they all share the caveat that they impose rather specific
constraints that may appear questionable in many empirical contexts, a
price that we have to pay in the presence of posttreatment confounders X1.

To illustrate the evaluation of the controlled direct effect in R under the
assumptions in expression (4.54), let us use the same data set, variable
definitions, and DR-based estimation approach as outlined at the end of
section 4.9. The only modification that we make is setting the argument
d2treat=0 in the dyntreatDML command. The procedure then yields an
estimate of the direct controlled effect of the sequence E[Y(1, 0) − Y (0, 0)]
(rather than of E[Y(1, 1) − Y (0, 0)] as in section 4.9): that is, the net effect
of the first training when switching off the second training for everyone:

The controlled direct effect amounts to 21.29 and is highly statistically
significant, with a standard error of 5.30 and a p-value that is very close to
zero.

As a further example for causal mediation analysis, we reconsider the
wexpect data in the causalweight package introduced at the end of section
3.5 to estimate the natural direct and indirect effects of gender on the wage
expectations of Swiss students. More concisely, we are interested in
whether male and female students differ in their wage expectations because
of choosing different study programs, which would imply an indirect effect
via the mediator study program, or because of other reasons. The latter
would point to a direct effect of gender on wage expectations, i.e., that is,
net of the choice of the study program. After loading the causalweight
package and the wexpect data, we wrap the latter by the attach command to
save all variables as own R objects. Female and male students going to
college might differ in terms of their family background, which might also
affect their choice of study program and their wage expectations. For this



reason, we aim at controlling for baseline characteristics that are jointly
associated with gender, on the one hand, and the mediator or outcome, on
the other hand.

To this end, we use the cbind command to define a set of covariates X
consisting of parents’ eduction (motherhighedu and fatherhighedu),
student’s age, and an indicator for being swiss. Furthermore, we define a
binary indicator for being male as treatment, D=male, a set of indicators for
study program choice (business, economics, communication, or business
informatics) as mediators, M=cbind(business,econ,communi,businform),
and the expectations about the monthly gross wages three years after
studying as the outcome: Y=wexpect2. Assuming that the conditions in
expression (4.61) are satisfied (which may admittedly be challenged in our
toy example with only a few control variables), we use Y, D, M, and X to
run the medDML command. The latter is a DR procedure based on equation
(4.64), which estimates any propensity scores and conditional mean
outcomes based on lasso regression, a machine learning approach discussed
in section 5.2. The box here provides the R code for each of the steps.

This gives the following output:



The first column provides the estimate of the total ATE, Δ, along with its
standard error and p-value; the second and third show those of the direct
effects under treatment, θ(1), and nontreatment, θ(0); the fourth and fifth
show those of the indirect effects under treatment, δ(1), and nontreatment,
δ(0); and the final column contains an estimate of the mean potential
outcome under nontreatment, E[Y(0, M(0))]. Keeping in mind that the
outcome variable is measured in steps of 500 CHF, the ATE estimate
suggests that males expect on average 1.355 × 500 = 678 CHF higher
monthly gross wages than females who are comparable in terms of X.

This overall effect is mostly driven by the direct effect of gender,
reflecting causal mechanisms other than the choice of the study program, as
the estimates of θ(1) and θ(0) amount to 1.088 × 500 = 544 CHF and 1.146
× 500 = 573 CHF, respectively. The indirect effect, which is due to gender-
specific differences in the choice of study program, is considerably smaller,
with the estimates of δ(1) and δ(0) corresponding to roughly 105 CHF and
133 CHF, respectively. Any of the total, direct, and indirect effect estimates
are statistically significant at the 5 percent level. Our results, therefore,
suggest that differential wage expectations of female and male students can
be explained only to some extent by the choice of study program, and to a
much larger extent by other factors entering the direct effect (which might
include personality traits or job expectations).

4.11 Outcome Attrition and Posttreatment Sample Selection

The evaluation of causal effects is frequently complicated by the issue that
the outcome of interest is observed only for a nonrandom subsample in the
data. One example is nonrandom outcome attrition, which occurs if the
outcome is measured in a follow-up survey (e.g., by means of a
questionnaire or interview several days, months, or years after treatment
assignment) and some of the initial study participants cannot be interviewed
anymore. This might be due to their relocation or reluctance to participate
in the interview. Another example is posttreatment sample selection,
implying that the outcome is observed only conditional on some other
posttreatment variable. This applies to the evaluation of the effect of
education on hourly wages, as the wages are observed only conditional on
being employed, or to the assessment of educational interventions like



school vouchers on college admissions tests, as test results are observed
only conditional on participating in the test. In general, sample selection
and outcome attrition create a bias when estimating causal effects, even in
the case that the treatment is randomized. But are there scenarios or
conditions that permit us to fix this problem?

Similar to for the treatment assignment in section 4.1, one approach is to
impose a selection-on-observables assumption, now with respect to
outcome attrition/sample selection, implying that the latter is as good as
random, conditional on observed information like the covariates and the
treatment. This is also known as a missing at random (MAR) assumption;
see, for instance, Rubin (1976). The evaluation of the ATE or other causal
effects then relies on a sequential selection-on-observables assumption with
regard to treatment and the attrition problem, which appears somewhat
related to the dynamic treatment context. Building on the notation of
section 4.9, let D1 denote the (possibly multivalued) treatment of interest,
while D2 is (contrary to the previous sections 4.9 and 4.10) not a treatment
or mediator that might have an effect on outcome Y, but a binary indicator
of whether the outcome is observed. That is, Y is known only for
observations with D2 = 1, but unknown if D2 = 0. Accordingly, the potential
outcome Y2(D1) is a function of D1 only, but not of the indicator for its
observability, D2. We can assess the ATE of D1 under the following
assumptions, such as discussed in Bia, Huber, and Lafférs (2021):

Figure 4.14 provides a causal graph that satisfies the conditional
independence assumptions in equation (4.67), given that there are no
omitted unobservables that jointly affect D1 and Y2 or D2 and Y2.



Figure 4.14
Causal paths under sequential conditional independence.

The conditions in expression (4.67) appear somewhat similar to those
suggested in expression (4.54) of section 4.9. The key difference is that we
now assume that Y2⊥D2|D1, X0, X1, which implies that the selection
indicator D2 does not affect Y, as it is not a treatment. A further implication
is that D2 is not associated with unobserved characteristics affecting Y,
conditional on covariates X0, X1 and treatment D1. Under these conditions,
we can assess the ATE  for two distinct values 

 of treatment D1 by equations (4.55), (4.56), and (4.57) when setting
D2 = 1 in any conditional mean outcome and propensity score. Therefore,
we may apply the very same identification results of section 4.9 for
assessing treatment effects under outcome attrition or sample selection
when imposing the assumptions in expression (4.67) rather than expression
(4.54).

In analogy to the discussion at the end of section 4.9, the evaluation
framework simplifies somewhat if conditioning on X1 is not required such
that outcome attrition/sample selection is as good as random, given
treatment D1 and baseline covariates X0 alone. Then, we can drop X2 from
the assumptions in expression (4.67) and any conditional mean outcomes or
propensity scores entering the expressions for the identification of the ATE.
For instance, the use of ψd2 in equation (4.58) rather than that in equation
(4.57) permits identifying . Similar to the discussion of dynamic
treatment effects, this approach may appear unrealistic in scenarios when



there is a substantial time lag between the treatment and the measurement
of the outcome and outcome attrition, such that posttreatment confounders
affecting both D2 and Y2 likely exist.



5
Causal Machine Learning

5.1 Motivation for Machine Learning and Fields of Application

In chapter 4, we encountered a range of methods for assessing causal effects
based on using treated and nontreated observations that are comparable in
terms of observed covariates X. We have so far (maybe more implicitly than
explicitly) assumed that the researcher or analyst preselects the covariates
to be controlled for before estimating any causal effect. This requires
substantial, if not exact, contextual knowledge about which covariates are
to be included to satisfy the selection-on-observables assumption. Even
though reasoning based on theory, intuition, or previous empirical findings
may and should guide the selection of covariates when aiming at making
the selection-on-observables assumption plausible, the exact set of variables
that is sufficient for satisfying this assumption (if such a set exists at all) is
typically unknown. This applies in particular to scenarios where the number
of available control variables is large. For instance, in big data contexts in
which the set of covariates is so rich that the selection-on-observables
assumption appears likely satisfied, an a priori unknown subset of those
covariates might be sufficient to tackle confounding.

As researchers or analysts, we would like to learn a model specification
that includes such a sufficient set of covariates. However, by considering X
to be preselected, statistically speaking, we assume away any model or
estimation uncertainty coming from the selection of X. This stands in stark



contrast to the common practice of selecting covariates based on how well
they predict the treatment, the outcome, or both in the data. Without
appropriately accounting for this selection step when estimating the
treatment effect and determining its statistical significance, such an
approach may entail misleading causal conclusions. In fact, treatment effect
estimators like inverse probability weighting (IPW), matching, and
regression are generally not robust to human-made ad hoc rules for
selecting covariates in the sense that their p-values and confidence intervals
might be incorrect. Is there a way to properly conduct and account for
covariate selection in causal analysis under specific conditions? Indeed,
causal machine learning (CML) approaches aim at (1) avoiding the ad hoc
selection of covariates by controlling for the latter in a data-driven way and
(2) providing valid inference (e.g., p-values and confidence intervals) under
such a data-driven covariate selection.

CML, therefore, appears particularly useful in big, and more specifically
in wide (or high-dimensional) data with a vast number of covariates that
could potentially serve as control variables, which can render covariate
selection by the researcher or analyst complicated, if not infeasible.
However, it is important to stress that data-driven covariate selection cannot
do away with fundamental assumptions required for the identification of
causal effects. Just as for the methods outlined in chapter 4, the data must
contain sufficiently rich covariate information to satisfy the selection-on-
observables assumption in expression (4.1). Under this precondition, CML
may be applied if there is a subset of covariate information that suffices to
effectively tackle confounding, but it is a priori unknown. Under the
assumption that a limited subset of covariate information (limited relative to
the sample size) permits controlling for the most important confounders,
CML can be approximately unbiased, meaning that the bias is negligibly
close to zero and -consistent, even when confounding is not perfectly
controlled for.

In addition to the estimation of average (or even distributional) effects in
the total population, we can apply CML to the data-driven detection of
important heterogeneities in causal effects across subpopulations that are
defined in terms of covariates X. For instance, it might be the case that a
specific pricing policy (e.g., a discount on a product or service) is more
successful in boosting sales among younger than among older customers, or



among the less educated rather than the more educated. CML may reveal
such a priori unknown effect heterogeneities. This also permits learning the
optimal policy in terms of treatment assignment (e.g., granting discounts)
across various subgroups depending on their observed characteristics, while
at the same time taking into account treatment costs (e.g., the cost of
granting discounts) in order to maximize the net benefits of the assignment.
A further strand of CML that is in the spirit of optimal policy learning is
reinforcement learning. It is based on repeatedly allocating alternative
treatments (e.g., distinct advertisements) in different time periods to (1)
iteratively learn from the data which treatment is most effective and (2)
ultimately focus on the provision of the most effective treatment to
maximize the causal impact.

5.2 Double Machine Learning and Partialling out with Lasso
Regression

One CML approach for estimating the average treatment effect (ATE) or
other causal effects is double machine learning (DML), as discussed in
Chernozhukov et al. (2018), which relies on Neyman-orthogonal functions
for treatment effect estimation (Neyman 1959). Considering a binary
treatment, Neyman-orthogonality implies that treatment effect estimation is
relatively robust (i.e., first-order insensitive) to approximation errors in the
estimation of the treatment propensity score p(X) and the conditional mean
outcomes μ1(X), μ0(X) introduced in chapter 4. It turns out that the doubly
robust (DR) estimator based on the sample analog of equation (4.45), whose
desirable properties were discussed in section 4.6, satisfies this robustness
property, as well as other DR approaches like targeted maximum likelihood
estimation (TMLE). In contrast, estimation based on equation (4.3) or (4.4)
is not robust to approximation errors of μ1(X) and μ0(X), while estimation
based on equation (4.40) or (4.41) is not robust to errors in p(X). Because
DR incorporates both propensity score and conditional mean outcome
estimation, the approximation errors can be shown to enter multiplicatively
into the estimation problem, such that small errors in either become
negligible when multiplied. This is key for the robustness property, as
discussed in Farrell (2015).



CML and DML owe their name to the fact that the model parameters
(e.g., regression coefficients) of p(X), μ1(X), and μ0(X) are estimated by
machine learning, a subfield of artificial intelligence. We will discuss some
machine learning approaches later in this chapter, as well as in section 5.3.
However, it needs to be stressed that CML is conceptually different to
conventional (predictive) machine learning. The latter aims at accurately
predicting an outcome by predictor variables based on minimizing the
prediction error, such as the mean squared error (MSE), through optimally
trading off prediction bias and variance.

This mere forecasting approach generally does not allow us to learn the
causal effects of any of the predictors. One reason is that any predictor
might be assigned less importance or weight (e.g., through a regression
coefficient) in the forecasting process than implied by its true causal effect.
This is the case, for instance, if the predictor is strongly correlated with
other predictors (e.g., work experience might be strongly correlated with
education), such that constraining the predictor’s weight hardly affects the
prediction bias (as the correlated predictor contains little additional
information for prediction), while reducing the variance. Therefore,
predictive machine learning with Y as the outcome and treatment D and
covariates X as predictors generally gives a biased estimate of the causal
effect of D, due to correlations between the treatment and covariates. But
even without such a correlation between D and X, the estimate may be
biased if the causal effect of D on Y is rather small (in absolute terms)
relative to the importance of X for predicting Y.

In DML, however, machine learning is not directly applied to treatment
effect estimation, but rather merely for predicting the plug-in parameters
p(X), μ1(X), and μ0(X) which enter expression (4.45) in section 4.6 of
chapter 4. To this end, we conduct separate machine learning predictions of
D as a function of X, Y among the treated as a function of X, and Y among
the nontreated as a function of X. This is motivated by the fact that
covariates X merely serve the purpose of tackling confounding, while their
causal effects are (very much in contrast to the effect of D) not of interest.
This makes the estimation of p(X), μ1(X), and μ0(X) a prediction problem to
which we can apply machine learning, while we use the sample version (or
sample analog) of equation (4.45) to estimate the causal effect of D.



To consider an example of machine learning, let us assume that in the
spirit of equation (4.12), μ1(X) and μ0(X) are estimated by regressing Y on X,
as well as higher-order and interaction terms of X in separate subsamples
with D = 1 and D = 0 using lasso regression; see Tibshirani (1996). While
both ordinary least squares (OLS) and lasso regression aim at finding the
coefficient values that minimize the sum of squared residuals, only lasso
regression includes a penalty term on the sum of the absolute values of the
slope coefficients in the minimization problem. The aim of this penalization
is to constrain (or regularize) the overall influence or importance of
regressors when predicting the outcome. Intuitively, including too many
regressors with low predictive power (as it would be the case in series
estimation with irrelevant, nonpredictive, higher-order terms) likely
increases the variance of prediction, with little gain in terms of bias
reduction. On the other hand, omitting very important regressors implies a
large increase in prediction bias relative to the gain in variance reduction.
For this reason, lasso regression aims to optimally balance bias and
variance through penalization, which is performed by shrinking the absolute
coefficients that would be obtained in a standard OLS regression toward
zero for less important regressors. The algorithm may even shrink
coefficients exactly to zero, implying that the respective regressors are
dropped from the model.

Taking the prediction of μ1(X) as an example, lasso regression solves the
following penalized minimization problem for obtaining the coefficients:

where p denotes the number of regressors (consisting of X and its higher-
order/interaction terms), the nonnegative value λ is the penalization term on
the sum of absolute slope coefficients, and |·| stands for the absolute value.
We note that for λ = 0, solving equation (5.1) corresponds to standard OLS
regression without penalization of the coefficients and thus, the variance of
predicting μ1(X).

We may choose λ by a cross-validation procedure for determining the
optimal amount of shrinkage that minimizes the MSE for outcome
prediction among a range of candidate values for λ. One possible approach



is leave-one-out cross-validation in the spirit of equation (4.13) in section
4.2. In practice, a coarser version known as k-fold cross-validation is
frequently applied, where the observations are randomly divided into K
nonoverlapping subsets. To this end, let us denote by k ∈{1, …, K} a
specific subset of observations, and let ki be the subset in which observation
i is situated. Then, we may select λ such that it minimizes the squared
residuals of predicted and observed treated outcomes:

where 1, −k i(Xi) is the prediction of μ1(X) based on coefficients that have
been estimated when exclusively using observations that are not in
observation i’s subset ki.

It is easy to see that this approach coincides with leave-one-out cross-
validation when ki only contains a single observation (namely, i). However,
particularly when samples are large, considering subsets with more than just
one observation (and thus reducing the number of subsets, K) reduces the
computational burden for selecting λ. As for μ1(X) and μ0(X), we can also
estimate the propensity score p(X) by a penalized (e.g., lasso logit)
regression, which includes a penalty term in logit-based maximum
likelihood estimation. As an alternative CML approach, the lasso-based
estimation of μ1(X) and μ0(X) can be combined with approximate covariate
balancing of Zubizarreta (2015) (see the discussion in section 4.5) instead
of estimating a propensity score model for p(X); see Athey, Imbens, and
Wager (2018). Similar to the arguments made in section 4.2, it is worth
mentioning that cross-validation yields a value of λ that is optimal for
estimating the plug-in parameter, but not necessarily for the ATE, the
conditional average treatment effect (CATE), or the average treatment effect
on the treated (ATET). Nevertheless, it constitutes a feasible approach for
picking an adequate penalization in practice.

A further element of several CML approaches, including DML, is the
use of independent samples for estimating the model parameters of the
plug-ins p(X), μ1(X), and μ0(X) on the one hand and of the treatment effects,
such as Δ or ΔD=1, on the other hand. To this end, we randomly divide the
total sample into two (nonoverlapping) parts or folds. We then estimate the



model parameters for p(X), μ1(X), μ0(X) (i.e., the coefficients in lasso
regressions of the treatment and outcome) in the first fold. Based on these
lasso coefficients, we predict the plug-ins p(X), μ1(X), μ0(X) in the second
fold and estimate the treatment effect of interest in the second fold, e.g., by
the sample analog of equation (4.45). Figure 5.1 provides a graphical
illustration of the workflow in the sample-splitting procedure.

Figure 5.1
Sample splitting when estimating the ATE.

Sample splitting avoids correlations between the two estimation steps
(namely, estimating the model parameters of the plug-ins and the treatment
effect). For this reason, sample splitting prevents overfitting bias related to
fitting the respective models too much to the data points in a sample, which
entails an underestimation of the error terms. However, sample splitting
apparently comes with the cost that only part of the data is used to estimate
the causal effect, thus increasing the variance. We can tackle this issue by
cross-fitting, which consists of swapping the roles of the folds used for
estimating the plug-in models and the treatment effect. That is, in a second
estimation round, we use the second fold for obtaining the lasso coefficients
for the plug-in models and the first fold for treatment effect estimation. We



ultimately estimate, for instance, the ATE by taking the average of the ATE
estimates in either fold.

Under sufficiently well behaved plug-in estimators, treatment effect
estimation based on DML with cross-fitting is -consistent and
asymptotically normal. More concisely, -consistency of DML is satisfied
if (among some other conditions) the plug-in estimates of p(X), μ1(X), μ0(X)
converge to their respective true values at a faster rate than n−1/4; see
Chernozhukov et al. (2018). A rate faster than n−1/4 can obviously still be
considerably slower than the conventional -rate and is attained by many
machine learning or deep learning algorithms under specific conditions; for
instance, see the discussions in Kueck, Luo, Spindler, and Wang (2022) and
Farrell, Liang, and Misra (2021). A further property worth noting is that
under these conditions, the asymptotic variance of DML is unaffected by
the machine learning and cross-fitting steps: that is, it is not higher than if
the covariates X to be controlled for had been known a priori rather than
learned in the data by machine learning. Due to this oracle property, we
may thus compute standard errors by conventional asymptotic
approximations without adjustment for the cross-fitting and machine
learning steps in large enough samples (even though these steps may affect
the variance of DML in data with a limited sample size).

As discussed in Chernozhukov et al. (2018), lasso regression attains the
n−1/4-rate requirement under approximate sparsity. The latter implies that the
number of important covariates or interaction and higher-order terms
required for obtaining a sufficiently decent (albeit not perfect)
approximation of the plug-in parameters is small relative to the sample size
n. To see the merits of cross-fitting, we note that when disregarding the
latter and instead conducting the lasso and treatment estimation steps in the
same total sample, the number of important predictors is required to be
small relative to  (which is a stronger condition than being small relative
to n); see Belloni, Chernozhukov, and Hansen (2014).

Also, TMLE, another doubly robust approach briefly introduced in
section 4.6, can be combined with the machine learning–based estimation
of the plug-in parameters p(X), μ1(X), and μ0(X) and cross-fitting or related
sample-splitting approaches, as discussed in Zheng and van der Laan
(2011). Similar to DML, this implies that the estimation of the model



parameters (e.g., lasso regression coefficients) of the plug-in parameters and
the TMLE-based ATE estimation take place in different folds of the data,
with the roles of the folds being swapped. In this case, ATE estimation also
can attain -consistency if particular regularity conditions like n−1/4-
consistency of the plug-in estimators are met.

Yet another CML approach is based on purging, or partialling out, the
influence of covariates X on outcome Y and treatment D prior to assessing
the treatment effect as discussed in Belloni, Chernozhukov, and Hansen
(2014), which may be combined with cross-fitting, too. In this case, we
randomly split the data into two folds and use the first fold to run lasso
regressions of Y on a constant and X, as well as of D on a constant and X,
respectively, to obtain coefficient estimates for the models E[Y|X] and
E[D|X]. The coefficients might either correspond to those directly obtained
from the lasso regressions or to those coming from OLS regressions of Y or
D on a constant and the lasso-selected variables in X. The latter procedure is
known as postlasso OLS and therefore uses lasso regression only to select
important covariates, while the association of the latter with D or Y is
ultimately estimated by OLS regression. In the second fold, we then use
these lasso or postlasso coefficient estimates to predict the outcome
residuals Y− E[Y |X] and treatment residuals D − E[D|X] and regress the
former on the latter using OLS to obtain an estimate for the ATE. As for
other CML approaches, we may swap the roles of the data sets and average
the ATE over both folds of the data.

The partialling out approach is inspired by the work of Robinson (1988)
on partial linear models. It is based on the idea that after purging the
confounding influence of the covariates on the outcome and treatment by
only considering the residuals of Y and D, the causal effect of the binary
treatment is identified by linear regression. This is in analogy to section 3.2
in chapter 3, where the treatment-outcome relation is assumed to be
unconfounded due to random treatment assignment, such that partialling out
is not even necessary. We also can apply partialling out to continuous
treatments. In this case, however, the treatment effect is generally not
permitted to vary across covariate values, which amounts to assuming a
constant or homogeneous CATE across X such that the CATE coincides
with the ATE, which is very much related to the discussion in section 4.2.
Similar to DML, the partialling out strategy can be shown to be -



consistent if the postlasso-based estimators of E[Y|X] and E[D|X] converge
at least with rate n−1/4 to the respective true models. A more in depth review
of various machine learning algorithms, CML, and DML is provided in
Athey and Imbens (2019); Kreif and DiazOrdaz (2019); Knaus (2021);
Shah, Kreif, and Jones (2021); Chernozhukov, Hansen, Spindler, and
Syrgkanis (2022); and Lieli, Hsu, and Reguly (2022). Approximate sparsity
or related assumptions on X are popular in CML. It is worth mentioning,
however, that even under a large (rather than sparse) set of control
variables, treatment effect estimation may under specific conditions be
asymptotically normal, even though it generally has a larger variance; see
the discussion by Cattaneo, Jansson, and Newey (2018) and Jiang et al
(2022).

To illustrate the implementation of DML in R, we load the causalweight
package and reconsider the JC data for the evaluation of the Job Corps
program already analyzed in section 4.9. This time, we are interested in the
effect of training participation in the first year after program assignment on
the health state four years after assignment when controlling for the
baseline covariates measured prior to training. After loading the JC data
using the data command, we define the set of covariates (stored in columns
2 to 29), X=JC[,2:29], the treatment (in column 37), D=JC[,37], and the
health outcome (in column 46), Y=JC[,46], which is measured from 1
(excellent) to 4 (poor). We then run the treatDML command using these
variables, a DML procedure that by default applies lasso regression for the
estimation of the propensity scores and conditional mean outcomes. We
store the results in a variable called output and inspect the ATE estimate, its
standard error, and the p-value by calling output$effect, output$se, and
output$pval. The box here provides the R code for each step.



The DML estimator yields an ATE of − 0.052, which points to a very
moderate improvement in general health because smaller values imply a
better health state. This rather small impact is nevertheless statistically
significant at the 1 percent level, as the standard error amounts to 0.017 and
the p-value to 0.0025 (or 0.25 percent).

5.3 A Survey of Further Machine Learning Algorithms

Lasso regression, as introduced in section 5.2, is arguably close to
conventional regression, with the crucial difference being the penalization
of the sum of absolute slope coefficients in the optimization problem (see
equation (5.1)) to take the variance into account. However, there are many
more machine learning methods, which are different in terms of estimation
but share the idea of optimally trading off the bias and variance in
predicting the plug-in parameters: that is, the propensity score and
conditional mean outcomes. Any of them may in principle be applied in the
DML, TMLE, or partialling out approaches described in section 5.2 (or
even other CML methods) if they satisfy specific regularity conditions like
n−1/4-convergence. This section provides a brief (and selective) introduction
to several other machine learners, but a much more comprehensive
discussion is provided in James, Witten, Hastie, and Tibshirani (2013) and
Hastie, Tibshirani, and Friedman (2008). To ease notation, the fact that the
plug-in models are only estimated in part of the data under cross-fitting will
be omitted in any formal discussion in this section.

Ridge Regression and Elastic Nets: Ridge regression or Tihonov
regularization, as discussed in Tihonov (1963) and Hoerl and Kennard
(1970), is very much related to lasso regression, but it penalizes the sum of
squared (rather than absolute) coefficients on the regressors. Considering
equation (5.1), this means that  is to be replaced by . A
noticeable difference between both methods is that ridge regression (whose
penalty is based on an L2 norm) cannot shrink coefficients of relatively
unimportant regressors exactly to zero, while lasso regression can (as it is
based on an L1 norm). Therefore, lasso regression is able to perform
variable selection (e.g., for defining parsimonious predictive models for the
treatment and the outcome) based on dropping regressors with zero
coefficients from the model, while ridge regression is not. However, neither



method uniformly dominates the other with regard to predictive
performance. Depending on the data, either ridge or lasso regression might
do better for estimating p(X), μ1(X), μ0(X). In fact, using a weighted average
of both penalization approaches, which is known as an elastic net, might
even outperform any single method. Similar to the choice of the penalty
term λ, we may apply cross-validation to determine the optimal weights in
an elastic net (e.g., 60 percent lasso and 40 percent ridge penalization) that
minimizes the MSE when estimating the plug-in parameters.

Decision Trees: Decision trees, as suggested in Morgan and Sonquist
(1963) and Breiman, Friedman, Olshen, and Stone (1984), are based on
recursively splitting the covariate space—i.e., the set of possible values of
X, for instance, when predicting treatment D—into a number of
nonoverlapping subsets. Recursive splitting is performed such that after
each split, a statistical goodness-of-fit criterion based on the differences
between the actual treatments and the subset-specific average treatment
(like the sum of squared residuals) is minimized across the newly created
subsets. Let us, for instance, consider the case that migrant status is the
most predictive element in X for treatment assignment because almost all
migrants but hardly any natives receive some form of treatment, like a
language course. This implies that the treatment states within migrant status
are more homogeneous than in the total sample. Therefore, splitting the data
into migrant and native subsets implies that the squared deviations (or
residuals) of the migrants’ treatment states from the average treatment
among migrants are on average lower than the squared residuals between
the observed and the average treatment in the total sample. The same
applies to the subset of natives. For this reason, the sum of the migrant
status-specific sum of squared residuals is lower than the sum of squared
residuals in the total sample prior to splitting. Formally,

where migrant=1, migrant=0, and  denote the sample averages of the treatment
D (i.e., the shares of treated) in the subsets of migrants, natives, and in the
total sample, respectively.



Decision trees aim at finding the split that entails the highest reduction in
the summed sums of squared residuals across subsets in a greedy manner:
that is, the split that is optimal at the current stage without assessing
performance several splits ahead. This approach is applied recursively, such
that subsets are split into further subsets. For instance, in another step, the
migrant subset might be split by age into migrants younger than 50 and 50
plus, if this split entails the largest additional reduction in the summed sum
of squared residuals across all subsets. Decision trees owe their name to the
fact that we can summarize the set of rules for splitting the covariate space
by means of a tree structure. The latter contains nodes, which represent the
covariate values at which the sample is split (e.g., “migrant = 1” versus
“migrant = 0”), and leaves, which are the terminal subsets beyond which no
further splitting occurs.

Interestingly, we also can represent such tree structures by regression
equations in which the variable to be predicted (e.g., the treatment) is the
dependent variable and indicator functions for the various leaves or
terminal subsets (e.g., I{migrant = 1, age < 50}) serve as regressors, such as

Here,  is the constant term reflecting the average treatment in a subset that
serves as reference category (e.g., natives), 1 and 2 provide the differences
in the treatment averages between the respective other subset and the
reference category, and  is the estimated residual of the treatment
equation. Based on the coefficient estimates, we can compute the estimated
propensity score for each of the subsets, such as  (migrant = 1, age < 50) =
 + 1.

We repeat the splitting process until a specific stopping rule is reached,
like a predefined maximum number of subsets or minimum number of
observations in a subset. As for choosing the number of covariates to be
included in lasso regression, we face a variance-bias trade-off concerning
the number of splits in decision trees. More splits imply a finer grid of
subsets, such that the observations within a subset are more similar in terms
of X. This reduces the bias, as (X) is estimated based on observations that
are more homogeneous in terms of X. However, similar to a reduction of the
bandwidth in radius matching, more splits imply that there are less



observations within each subset to be used to estimate (X) (or, similarly,
the conditional mean outcomes), which increases the variance. As for lasso
regression, we may use cross-validation to determine the optimal number of
splits that minimizes the MSE by optimally trading off bias and variance.

Decision trees are a nonparametric method in the sense that splitting (or
the use of indicator functions) does not impose functional form (e.g.,
linearity) assumptions about how D and X are associated. We might judge
this to be an advantage over lasso regression, which is in principle a
parametric approach (e.g., based on linear or logit models) and whose
degree of model flexibility (in contrast to decision trees) depends on the
inclusion of interaction and higher-order terms. However, a disadvantage of
decision trees is that the estimated propensity score changes
discontinuously across subsets: that is, it is not smooth in X as would be the
case in kernel regression. This follows from the fact that  (x) corresponds
to an unweighted average of the outcomes of all observations with X values
in the same subset as value x:

where Lx denotes the subset (or leaf) in which value x is situated. Put
differently, the discontinuity stems from the nonsmooth indicator functions
in equation (5.5). Furthermore, the variance of tree structures is typically
high. A small change in the data, therefore, can entail substantially different
splitting rules, and thus definitions of the indicator functions in equation
(5.4).

Bagged Trees and Random Forests: We can mitigate the issue that a
single decision tree with many leaves likely suffers from a high variance by
bootstrap aggregation, or “bagging,” as discussed in Breiman (1996). The
idea of bagged trees is to repeatedly draw bootstrap samples (see the
discussion in section 3.4) from the original data with replacement (such that
an observation might be drawn several times—or not at all—in a newly
created bootstrap sample) and estimate the trees in each bootstrap sample.
Then, the treatment or outcome is predicted based on averaging the
predictions in the individual trees. Formally,



where B denotes the number of bootstrap samples and b indexes the various
parameters (like treatments, covariates, or leaves) in a specific bootstrap
sample b. This procedure not only has a smaller variance than basing
propensity score estimation on a single tree, but it also implies that  is a
smooth function of X, which bears some similarly to kernel regression, as
discussed in section 4.2. To better see this, note that we may rewrite
equation (5.6) as

Due to bagging (i.e., averaging over the indicator functions of individual
trees), the weights wi(x)bagged are (in contrast to single trees) smooth in X, in
the sense that they can take many values, given that the number of trees
grows large. In bagged trees, the weights depend on the predictive power of
the regressors, which can be a practically relevant advantage over kernel
regression as described in equation (4.17), where weak predictors in X may
importantly affect the weight and thus exacerbate the curse-of-
dimensionality problem mentioned in section 4.4.

Random forests, as discussed in Ho (1995) and Breiman (2001), are a
further variation of tree-based methods and are similar to bagged trees in
the sense that they rely on repeatedly drawing samples from the original
data for estimating many trees and aggregating (or averaging over)
predictions. They are, however, different in that only a random subset of
(rather than all) covariates is chosen as potential variables for splitting at
each split of a specific tree. Such a random selection of covariates aims at
reducing the correlation of tree structures across samples (which are
correlated because they are drawn from the same original data) to further
reduce the variance in the estimation of the plug-in parameters. Similarly to
bagged trees, we can represent random forest–based predictions by smooth
weighting functions.

Boosting and BARTs: Boosting, as described in Freund and Schapire
(1997), is yet another way to improve less sophisticated or weak machine



learners by aggregation, but based on sequential application of such a weak
learner (rather than averaging over many samples, as in the case of bagging
and random forests). As an example, consider a simple decision tree with
just a few splits for making predictions, which is likely to perform poorly.
However, after a first application of the tree, we may compute the residuals,
such as the difference between the treatment and the average treatment in
the respective leaf, in order to apply the simple tree to those residuals again,
which can substantially increase the predictive performance. Indeed,
boosting consists of repeating these steps many times to sequentially apply
the simple tree to the respective residuals of the previous prediction. This
ultimately permits approximating the association of the covariates and the
variable to be predicted in a very flexible way. A related method involves
Bayesian additive regression trees (BARTs), as suggested in Chipman,
George, and McCulloch (2010), which include a so-called regularization
prior in the boosting process that penalizes too many splits in the tree
structure to prevent excessive variance due to overfitting.

Neural Networks: Neural networks, as discussed in McCulloch and
Pitts (1943) and Ripley (1996), aim at fitting a system of nonlinear
regression functions that flexibly models the influence of a set of regressors
(like covariates) on a variable to be predicted (like the treatment or
outcome). Specifically, the regressors serve as inputs for specific nonlinear
intermediate functions (e.g., logistic or rectifier functions) called hidden
nodes, which themselves serve as inputs for the output layer: that is, the
model of the variable to be predicted. The hidden nodes bear some
similarity to the baseline functions in series regression (with the difference
that they are learned from the data rather than predetermined), and with
principal component analysis, which is based on dimension-reducing linear
(rather than nonlinear) functions of the regressors. Indeed, when replacing
the nonlinear functions by linear ones, neural networks collapse to a linear
regression model.

Depending on the model complexity, hidden nodes may affect the
outcome either directly or through other hidden nodes, such that several
layers of hidden nodes allow modeling interactions among the functions.
The number of hidden nodes and layers thus gauges the flexibility of the
model, with more parameters reducing the bias but increasing the variance.
Figure 5.2 provides an example of a neural network with five covariates and



two hidden layers with four and three hidden nodes (e.g., logistic or rectifier
functions, denoted by Λ), respectively, for estimating the treatment
propensity score.

Figure 5.2
A neural network for treatment prediction.

The basic approach of neural networks has been extended and refined in
various dimensions, which is commonly referred to as deep learning. One
refinement involves convolutional neural networks (CNNs); for instance,
see LeCun, Bottou, Bengio, and Haffner (1998), which do not rely on
providing a list of regressors but may autonomously learn to create relevant
predictors from objects like images that a priori do not have a clear data
structure. To this end, filters are applied, which slide over a prespecified
amount of pixels in images to map them into numeric values based on
specific functions, which permits representing particular spatial patterns
(such as edges) by numeric features. This is typically followed by a pooling
step that aggregates these features (e.g., by taking average or maximum
values over a prespecified number of adjacent numeric features). We may
actually repeatedly apply filtering (of already pooled features) and pooling
steps for the purpose of further transforming and aggregating the features.
Finally, the refined features are used as regressors in a standard (i.e., feed-
forward) neural network as described before, such as in figure 5.2. A further
interesting development among many others are recurrent neural networks
(RNNs) that allow feedback processes (rather than sequential effects)



between hidden nodes situated in distinct hidden layers when optimizing
prediction.

Support Vector Machines: Support vector machines, as discussed in
Boser, Guyon, and Vapnik (1992) and Cortes and Vapnik (1995), can be
best described by considering a binary variable to be predicted, like the
treatment indicator D, even though a version for continuous outcomes exists
as well. Put simply, the method aims at nonlinearly transforming the
covariates in a way that permits fitting a linear hyperplane across the
transformed covariate space, such that the hyperplane accurately separates
the treatment values into two subsets. This implies that in one subset, there
are mostly treated units, while in the other subset, there are mostly
nontreated units. The hyperplane thus serves as a frontier between
transformed covariate values with mostly treated or nontreated
observations. This frontier is fitted in a way that maximizes the distance to
the closest observation from either subset with D = 1 and D = 0,
respectively, to maximize confidence in the classification of the transformed
covariate space into predominantly treated and nontreated subsets.

Ensemble Methods: Finally, an ensemble method relies on a
combination of several machine learning algorithms for making predictions
by taking a simple or weighted average of the individual predictions of
those algorithms; for instance, see Zhou (2012) and van der Laan, Polley,
and Hubbard (2007). As for other tuning parameters in machine learning,
we may determine the optimal weight of each algorithm by cross-validation
to maximize the predictive accuracy. Based on this approach, an ensemble
method may outperform each of the individual algorithms in terms of
prediction.

Let us reconsider our DML application in R discussed at the end of
section 5.2, but now use the random forest rather than lasso regression for
estimating the propensity scores and conditional mean outcomes. To this
end, we set the argument MLmethod in the treatDML command to
“randomforest” and otherwise run the same commands as before, as shown
in the box here.



DML now yields an ATE of − 0.041, which is in absolute magnitude
slightly lower than the lasso-based estimate presented in section 5.2. As
before, this points to a very moderate health-improving effect that is
statistically significant at the 5 percent level (with a standard error of 0.018
and a p-value of 0.027). As already mentioned, the random forest might be
preferred over lasso regression because being an aggregated tree-based
method, it permits for arbitrary nonlinearities in the associations of X and Y
or D, respectively. When using lasso regression, we would need to include
interaction and higher-order terms of X to allow such nonlinearities.

5.4 Effect Heterogeneity

The discussion in chapters 3 and 4, as well as section 5.2, predominantly
focused on the evaluation of aggregated effects like the ATE or the ATET.
In many empirical contexts, however, researchers and analysts are
interested in whether causal effects differ importantly (i.e., are
heterogeneous) across specific subgroups that can be described in terms of
observed characteristics (i.e., covariates X). For instance, we might want to
know whether the effectiveness of a training program or a marketing
campaign differs across characteristics like gender, age, income, or other
variables. Learning which groups a specific treatment is particularly
effective for can be helpful for improving treatment allocation, such as
targeting those customer groups among which a marketing campaign entails
particularly high effects on sales.

CML, combined with sample splitting, can be fruitfully applied to
investigate treatment effect heterogeneity across X, while at the same time
avoiding inferential issues of multiple hypothesis testing when searching for
subgroups with significantly different effects. Such issues arise when a
researcher or analyst investigates effect heterogeneities across a large set of
subgroups and then only reports the treatment effects for those subgroups
across which statistically significant differences in causal effects occur. This
approach will tend to find too many significant differences that are spurious
in the sense that they do not occur in the population. This problem is related
to the fact that conventional t-statistics and the related p-values are only
valid for testing a single hypothesis, but they need to be adjusted when
conducting several hypothesis tests at the same time. The problem of



finding too many subgroups with effect heterogeneities due to multiple
hypothesis testing is closely related to the issue of overfitting: that is,
finding too many predictors associated with an outcome of interest. This
motivates the application of appropriately designed machine learning
approaches for analyzing effect heterogeneity.

Let us first consider the case that treatment D is randomly assigned, as in
successful experiments. Then, covariates X are not required for making
subjects comparable across treatment states when assessing causal effects
but may nevertheless be exploited to assess effect heterogeneity. In this
context, Athey and Imbens (2016) suggest a causal tree method that builds
on two key modifications of conventional decision trees for prediction, as
discussed in section 5.3. First, instead of Y, the difference in Y across
treatment groups serves as the outcome to be predicted when recursively
splitting the covariate space into subgroups. The algorithm thus aims at
generating covariate value-specific subgroups in a way that minimizes the
sum of squared residuals in effect estimation (rather than outcome
prediction). This corresponds to finding the splits that maximize effect
homogeneity within, or put differently, effect heterogeneity across
subgroups defined based on values of X. Therefore, the structure of a causal
tree yields a definition of subgroups with the most heterogeneous treatment
effects up to the number of splits considered.

As a second modification, a causal tree applies sample splitting to use
distinct parts (or folds) of the data for estimating the tree’s structure and the
treatment effects within subsets. This avoids spuriously large effect
heterogeneities due to overfitting, and thus the previously mentioned
inference issues related to multiple hypothesis testing. We also can apply
the causal tree method when the treatment is not randomly assigned, but the
selection-on-observables assumptions in expression (4.1) hold for a
preselected (rather than machine learning–selected) set of covariates. In this
case, we may reweight outcomes by the inverse of the propensity score in
analogy to equation (4.40) in section 4.5 prior to taking differences in
treated and nontreated outcomes and applying the causal tree approach.

A further and related method for investigating effect heterogeneity is the
causal random forest; see Wager and Athey (2018) and Athey, Tibshirani,
and Wager (2019). As the name suggests, it is a modified version of the
random forest and also can (in contrast to the causal tree) be applied when



important control variables are not preselected but adjusted for by machine
learning, as discussed in section 5.2, given that the selection-on-observables
assumption in expression (4.1) is satisfied.

The causal forest consists of several steps. First, we predict both Y and D
as a function of X using random forests and leave-one-out cross-validation.
The latter implies that the outcome or treatment of each observation is
predicted based on all observations in the data but its own, in order to
prevent overfitting when conditioning on X. Second, we use the predictions
for computing residuals of the outcomes and treatments, which corresponds
to the partialling out strategy discussed at the end of section 5.2. Third, we
predict the effect of the residuals of D on the residuals of Y as a function of
X by yet another random forest, which averages over a large number of
causal trees that use different folds of the respective tree-specific samples
for modeling effect heterogeneity by a tree-structure and estimating
treatment effects within the subsets. Put simply, this method combines the
idea of sample splitting and partialling out to control for important
confounders (as discussed in section 5.2) with the causal tree approach for
finding effect heterogeneity, but based on averaging over many trees.

Even though our discussion focuses on the random forest, it is worth
noting that we may also use other machine learning algorithms for this two-
step approach of partialling out and detecting effect heterogeneity, which
Nie and Wager (2020) refer to as “R-learning” (in recognition of Robinson
(1988)).

When comparing a single causal tree to a causal forest, an advantage of
the former is that it directly yields easy-to-interpret splitting rules for
defining subgroups based on the most predictive covariates in terms of
effect heterogeneity. On the negative side, tree structures tend to have a
higher variance, such that a small change in the data may entail very
different splitting rules. The causal forest is more attractive in terms of
variance, but on the other hand, it does not provide straightforward
guidance on how to define subgroups due to averaging over many trees. It,
however, yields an estimate of the CATE Δx = E[Y(1) − Y (0)|X = x]; see
equation (4.2). Therefore, we can investigate the heterogeneity of the CATE
as a function of the covariates X. We may, for instance, split the sample into
several categories with higher and lower CATE estimates based on specific



quantiles (like the median) of the CATE distribution, and investigate
whether the averages of certain or all covariates differ importantly across
categories. It is also worth mentioning that appropriately averaging over the
CATE estimates in the total sample or among the treated provides consistent
estimates of the ATE and ATET, respectively.

Another interesting feature of the causal forest is that we can also apply
it to a continuously distributed treatment D, as discussed in section 4.8. In
this case, the method yields the conditional average partial effect (CAPE) of
marginally increasing the currently given treatment intensity when keeping
the covariates fixed at some value x. This formally corresponds to the
derivative of the conditional mean of Y given X and D with regard to D, in
analogy to the average marginal effect discussed in section 3.5 in chapter 3
where we did not control for X:

A further approach for learning about the heterogeneity of the CATE is
based on the DML approach outlined in section 5.2, and more specifically
on the machine learning–based estimate of the efficient influence function
ϕ(X) in equation (4.45) of section 4.6. Just as the unconditional average of
this influence function yields the ATE of a binary treatment, Δ = E[ϕ(X)],
its conditional average given X yields the CATE: Δx = E[ϕ(X)|X = x]. This
suggests that we may investigate effect heterogeneity by regressing the
estimated efficient influence function, denoted by , on X or a subset of
the covariates, like an indicator for gender if effect heterogeneity across
gender is of interest.

As discussed in Semenova and Chernozhukov (2021), running an OLS
regression of  on a limited number of preselected covariates can under
certain conditions yield asymptotically correct coefficient estimates and
standard errors when testing whether effect heterogeneity is statistically
significant. Two important conditions are that we estimate  by cross-
fitting (i.e., in a different data fold than the conditional mean outcome and
the propensity score), and that the convergence rate of the latter plug-in
parameters is faster than n−1/4. Under these conditions, one can infer from
the coefficient estimate on a gender indicator and its standard error whether



the CATE statistically significantly differs across gender (and this applies
similarly to other covariates). This is remarkable because unlike in a
standard OLS regression with a known or directly observed outcome, 
needs to be estimated by machine learning first. But similar to ATE
estimation in section 5.2, the machine learning step under certain conditions
does not affect the asymptotic behavior of the OLS regression, such that we
can assess effect heterogeneity with -consistency.

When investigating effect heterogeneity across continuously distributed
(rather than binary or discrete) covariates, such as income, we might want
to avoid imposing a linear association between effect heterogeneity and
covariates. For this reason, we may prefer a nonparametric kernel or series
regression (see section 4.2) of  on the continuous covariates instead of a
linear regression. In this case, the machine learning step does not affect the
convergence rate and asymptotic behavior of the kernel regression if certain
conditions are met, as demonstrated by Zimmert and Lechner (2019) and
Fan, Hsu, Lieli, and Zhang (2020).

Rather than considering a limited number of preselected covariates for
CATE estimation, we may also be interested in detecting the covariates that
most importantly predict effect heterogeneity in a data-driven way. To this
end, in principle, we can apply a machine learning algorithm to predict 
as a function of X and assess which covariates have the best predictive
power. In a lasso regression of  on the covariates (and possibly
interaction and higher-order terms), the so-called standardized coefficients,
which have been standardized by the standard deviation of the covariates,
permit ranking covariates according to their predictive power in terms of
effect heterogeneity. As a word of caution, however, the most predictive
variables could be strongly correlated with other covariates. The latter
might obtain a lower rank due to this correlation but are not necessarily
unimportant in terms of how they influence effect heterogeneity.

Conducting inference (e.g., computing p-values and confidence
intervals) or hypothesis tests about the importance of covariates for effect
heterogeneity is less straightforward under a data-driven selection of
covariates and generally requires further sample splitting steps. This is due
to the threat of overfitting when selecting important covariates by machine
learning and assessing their statistical significance in the very same data.
The overfitting issue implies that we should use different folds of the data



for discovering and selecting the most influential covariates on the one
hand, and for statistical inference, such as assessing whether the selected
covariates statistically significantly drive effect heterogeneity, on the other
hand. This principle is obeyed in the algorithm suggested in Lee, Bargagli-
Stoffi, and Dominici (2020), as well as the sample-splitting approach in
Athey and Imbens (2016).

As a final comment on the DML-based analysis of effect heterogeneity,
it is worth noting that for the sake of an optimal estimation of the CATE
with the smallest possible bound on the estimation error, our previous cross-
fitting approach can be further refined, as discussed by Kennedy (2020). To
this end, we use three folds of the data to estimate the propensity score
model p(X) in the first fold, the models of the conditional mean outcomes
μ1(X) and μ0(X) in the second fold, and the efficient influence function ϕ(X)
along with the CATE of interest in the third fold. Thus p(X) as well as μ1(X),
and μ0(X) are no longer estimated in the same fold. Again, we can swap the
roles of the folds to obtain the final CATE estimates by averaging over the
CATE estimates in the various folds. As further refinement, we may repeat
random data-splitting into three folds and subsequent cross-fitting for CATE
estimation multiple (e.g., 50) times to ultimately take the median CATE of
the multiple cross-fitting steps as a final estimate. This likely entails a
smaller variance in CATE estimation than a single cross-fitting approach.

Let us reconsider the JC (Job Corps) data of the causalweight package
analyzed in sections 4.9 and 5.2 to estimate the CATE and the ATE in R
based on the causal forest, using the grf package of Tibshirani, Athey, and
Wager (2020). We define the pretreatment characteristics as covariates,
X=JC[,2:29], training in the first year of the Job Corps program as the
treatment, D=JC[,37], and the proportion of employment in the third year
as the outcome, Y=JC[,40]. After setting a seed for the replicability of the
results using set.seed(1), we run the causalforest command with X, Y, and D
and store the output in an R object named cf. The box here provides the
code for the various steps.



Next, we use the output in cf to estimate the ATE. This is based on the
DML approach as described in section 5.2, however, using the random
forest rather than lasso regression for estimating the propensity score and
conditional mean outcomes. To this end, we wrap the cf object with the
average treatment effect command and save the output in an object named
ATE. We then compute the p-value in the same manner as outlined at the
end of section 3.4: We first construct the t-statistic by dividing the ATE, the
first element in ATE, by its standard error, the second element. We then take
the negative of the t-statistic’s absolute value, assess it on the standard
normal distribution using the pnorm command and multiply it by 2 before
saving it in an object named pval. Finally, we call the objects ATE
(containing the ATE estimate and its p-value) and pval.

Running the code gives an ATE of 4.27. As the outcome is measured in
percentage from 0 to 100, this suggests that the training increases the
proportion of weeks of employment in the third year after Job Corps
assignment on average by 4.27 percentage points. The standard error
amounts to just 0.89, such that the p-value is very close to zero. Next, we
plot the distribution of the CATEs in our sample. To this end, we store the
CATEs provided in cf$predictions for each observation in an object named
CATE and wrap the latter by the hist command to produce a histogram of
CATEs.



This gives the graph in figure 5.3. In line with the ATE, the vast majority
of CATE estimates is positive. Yet effect heterogeneity appears
nonneglibile, given the range of values the CATE estimates take. In further
heterogeneity analysis, we verify whether the CATEs differ importantly
across a preselected covariate of interest (in our case, gender) using the
approach of Semenova and Chernozhukov (2021). To this end, we apply the
best linear projection command and feed in the cf output to linearly regress
the random forest–based estimates of the efficient influence functions, ,
on the variable JC$female.

Figure 5.3
Distribution of CATEs.

Running this code yields the following output:



The results suggest that the CATEs are on average −1.71 percentage
points lower among females than among males (whose average CATE
amounts to 5.03 percent). This difference is not statistically significant at
any conventional level, however, as the p-value amounts to 0.339 (or 33.9
percent). Finally, we aim at detecting the best predictors of the CATEs, and
thus the covariates that most importantly drive effect heterogeneity in data-
driven way using a random forest. To this end, we load the randomForest
package by Liaw and Wiener (2002) and use the data.frame command to
generate a data matrix called dat, which contains the CATEs in the object
CATE and the covariates X.

We then run the randomForest command with CATE ∼. as its first
argument, which means that CATE is to be predicted based on all other
variables in the data matrix, and data=dat as the second argument used to
define the data matrix. We store the output in an R object named randomf
and wrap the latter by the importance command to investigate the
importance of the various covariates for predicting the CATEs. The
importance measure is defined as the decrease in the sum of squared
residuals in a tree-based out-of-sample prediction of the CATE when
including versus not including the covariate for splitting, averaged over all
trees in the forest. A larger number, therefore, means that the respective
covariate is more relevant for assessing effect heterogeneity.

Running the code gives the following results:



We find that the covariates hhsize, age, and educ are by far the most
relevant predictors of the CATE, as their values of the residual-based
importance measure clearly exceed those of the other elements in X.

5.5 Optimal Policy Learning

A concept related to the CATE and its heterogeneity across covariates is
optimal policy learning, as discussed in Manski (2004), Hirano and Porter
(2009), Stoye (2009), Qian and Murphy (2011), Bhattacharya and Dupas
(2012), and Kitagawa and Tetenov (2018). It aims at optimally allocating a
(possibly costly) treatment in a population as a function of covariates X
when also taking the costs into account, which may vary across covariates,
too (just as the effects do). For instance, a company might aim at adjusting
its pricing policy for products or services to optimally target customers by
offering discounts only to clients if the benefits (e.g., in terms of additional
sales) on average outweigh the costs (e.g., in terms of a reduced profit
margin) given observed characteristics X (like age, education, or previous
buying behavior). A further example is the optimal selection of job seekers
or employees to participate in a training program to maximize their
employment probability or productivity. We will henceforth focus on policy
learning that aims at maximizing average outcomes under a binary



treatment based on covariate dependent-treatment assignment. However, the
framework can be extended to multivalued or dynamic treatments (see, for
instance, Zhou, Athey, and Wager (2018) and Kallus (2017)), as well as to
optimality criteria other than the average (e.g., the median or another
quantile of the outcome).

To formalize the discussion, let us denote by π(X) a specific treatment
policy defined as a function of X. To give an example, a policy could
require that a medical treatment, such as obtaining versus not obtaining a
scarce vaccine, is set to D = 1 (vaccination) for all observations aged 65 or
older and D = 0 (no vaccination) otherwise. This would correspond to the
policy rule π(X) = I{age ≥ 65}, such as π(age = 30) = 0 and π(age = 80) = 1.
In this example, the policy depends on only one covariate (age), but in
practice, it might be a function of several covariates X. The average effect
of policy π(X), denoted by Δ(π(X)), corresponds to the difference in mean
potential outcomes under π(X) versus nontreatment of everyone:

where the third equality follows from the law of iterated expectations and
highlights the close relationship of optimal policy learning based on
covariates and the identification of the CATE ΔX. The optimal policy,
denoted by π*(X), maximizes the average effect among the set of all feasible
policies, denoted by Π, where we assume a countable (i.e., finite) number of
policies in this set:

Based on equations (5.9) and (5.10), we can define the regret function
associated with treatment policy π(X). The regret function corresponds to
the undesirable reduction in the average policy effect due to implementing
the suboptimal policy π(X), rather than the optimal policy π*(X), and is
denoted by R(π(X)):



Therefore, finding the optimal policy among the set of feasible policies Π
implies that the average policy effect is maximized and regret R is equal to
zero. Furthermore, finding the optimal policy can be shown to amount to
solving the following maximization problem:

Equation (5.12) demonstrates that similar to effect heterogeneity
analysis, the efficient influence function ϕ(X) in equation (4.45) of section
4.6 is also useful for optimal policy learning, as considered in Dudík,
Langford, and Li (2011); Zhang et al. (2012); and Zhou, Mayer-Hamblett,
Khan, and Kosorok (2017). The term (2π(X) − 1) implies that the CATEs of
treated and nontreated subjects enter the expectation positively and
negatively, respectively. Maximizing the expectation, therefore, requires
optimally trading off treated and nontreated subjects in terms of their
CATEs when choosing the optimal treatment policy among all feasible
policies. In the presence of a large set of covariates X, we may base the
estimation of the optimal policy on the sample analog of equation (5.12),
with ϕ(X) being estimated by cross-fitting and machine learning–based
prediction of the plug-in parameters, as outlined in section 5.2.

Similar to ATE estimation, basing policy learning on DML to obtain an
estimate of the optimal policy in the data, denoted by , has desirable
properties under specific conditions, even if the important elements in X
driving confounding, effect heterogeneity, or both are a priori unknown.
Namely, the upper bound on (i.e., the worst case value of) 

, the regret of the estimated optimal policy 
 versus the truly optimal policy π*(X), can go to zero at the -rate, as

demonstrated in Athey and Wager (2021). One condition for this property is
that the plug-in parameters (i.e., the propensity score and conditional mean
outcomes) in ϕ(X) are estimated at a convergence rate faster than n−1/4, as
already discussed in the context of ATE estimation in section 5.2. A further
important condition is that the set of possible policies Π is not too complex,
meaning that it is limited to a countable number.

This is the case, for instance, if we define a limited number of predefined
policies π(X) (e.g., the three alternatives that all natives, all migrants, or
everyone gets some training) to be assessed or alternatively, a limited



number of subgroups of observations across which the treatment may vary
(e.g., at most eight customer segments when assessing a marketing
campaign). In the latter case, we may determine the subgroups in a data-
driven way as a function of X, as well as the respective optimal treatment in
each subgroup. Loosely related to (but yet different from) the causal tree of
section 5.4, this approach corresponds to a decision tree using the estimate
of ϕ(X) as the outcome for optimally splitting the covariate space and
assigning (possibly distinct) treatments to the various subgroups in a way
that maximizes the average policy effect in the data. Such a policy tree,
therefore, yields optimal treatment assignment rules for subgroups (e.g.,
customer segments) that can be intuitively described by the tree structure.

We have so far abstracted from any costs related to implementing the
policies. In reality, however, the costs of treatment provision need to be
taken into account for a proper assessment of the optimal policy. A first
reason is that any policy should be implemented only if the benefits
outweigh the costs; otherwise, the optimal policy is nontreatment. Second,
costs may vary across policy rules as a function of covariates X, thus
affecting the net benefits of the various policies that could be implemented
in principle. For instance, the costs of running a marketing campaign could
vary across two geographic regions, which are included by means of a
regional dummy variable among covariates X. In this case, the marketing
expenditures differ depending on whether π(X) targets one region, the other
region, or both. More formally, let us denote the costs associated with
policy π(X), which might depend on the values of covariates X, as CX(π(X)).
Then, the following modification of equation (5.9) accounts for the costs,
and therefore corresponds to the net (rather than gross) benefits, of the
treatment policy π(X):

To implement policy learning in R, let us reconsider the NSW data
previously analyzed at the end of sections 4.2, 4.3, and 4.4 in chapter 4. We
load the Matching, policytree, and DiagrammeR packages, which contain
the data of interest, the policy learning commands, and CX(π(X)) procedures
for diagrams and graphs, respectively. We apply the data and attach



commands to the lalonde data set to load the latter and store all variables in
own R objects.

As the procedure that we are going to use requires the treatment to be
coded as a factor, we define D=factor(treat). Our outcome of interest are
real earnings in 1978, Y=re78, and also covariates X are defined in the same
way as in the empirical example at the end of section 4.2. In the next step,
we feed X, Y, and D into the multi arm causal forest command to estimate
the plug-in parameters (i.e., the propensity scores and conditional mean
outcomes) by means of random forests and store the output in an object
named forest. We wrap the latter by the double robust scores command to
compute estimates of the efficient influence functions ϕ(X), which we save
in an object named influence.

We then define those covariates based on which the optimal treatment
policy shall be determined, which can be a different set than the variables
occurring in X. For instance, we might want to find a policy rule that does
not discriminate with regard to gender or ethnicity, such that these variables
are not included. In our example, we specify the treatment policy–relevant
characteristics to consist of age and education, by defining
Xpol=cbind(age,educ,nodegr). Finally, we feed Xpol and influence into the
policy tree command and set depth=2. This entails the estimation of a
policy tree as discussed in Athey and Wager (2021), with optimal policies
for four subgroups (as a depth of 2 entails 22 = 4 subgroups), which are
determined in a data-driven way based on the variables in Xpol. We save the
output in an object named tree, which we wrap by the plot command to
investigate the tree structure, giving the optimal treatment policy for each
subgroup. The box here provides the R code for the various steps.



Running the code returns the policy tree in figure 5.4. It suggests that
any individual with six years of education or less should be trained because
action = 2, which corresponds to training participation under the definition
of treatment D. In contrast, we should not train individuals with seven or
eight years of education, as action = 1 (no treatment). Among those with
more than eight years of education, only those no more than 42 years old
should be assigned to training according to the optimal treatment policy in
our data. However, we keep in mind that our analysis abstracts from any
costs of training when computing the effects of the policies Δ(π(X)), but in
practice, such costs should also be taken into account.

Figure 5.4
Policy tree.

5.6 Reinforcement Learning



In this section, we consider a further machine learning–based method for
learning optimal treatment policies, which is yet different from the one
described in the previous section in that treatment assignment is dynamic
across time periods. In fact, reinforcement learning, as discussed in Sutton
and Barto (1998) aims at learning the most effective treatment, such as
yielding the highest ATE among a set of feasible treatments, by repeated
assignment of multiple treatments and their evaluation across various
periods. Such a scenario is sometimes referred to as the multiarmed bandit
problem, alluding to a gambler in a casino playing a slot machine with
multiple levers (or arms) that produce a payout and can be pulled in
multiple periods.

To account for this dynamic framework, we denote by Dt and Yt the
treatment and the outcome in period T = t, with t ∈{1, 2, …, �} and �
denoting the total number of periods. Any treatment Dt may take values dt

∈{0, 1, …, J}, with 0 indicating no treatment and 1, …, J indexing
different nonzero treatments, like advertisement campaigns on an online
platform. Let us denote the mean potential outcome of treatment d in a
particular period t by μt(dt) = E[Yt(dt)|T = t], and the average of the mean
potential outcomes for a fixed (i.e., the same) treatment d = d1 = ⋯ = d�
across all treatment periods by μ(d) = E[YT(d)].

Furthermore, we impose two assumptions, which rule out that the
treatment effects interact with the time periods. First, we assume the
treatments will only affect the outcomes in the same period t, such that, for
instance, an online advertisement presumably only influences the buying
behavior in the period the advertisement was placed, but not future buying
behavior. This rules out dynamic treatment effects by requiring that
treatments in earlier periods do not affect outcomes in later periods.
Therefore, μt(dt) does not depend on previous treatment assignments, which
may be plausible if different individuals (i.e., repeated, nonoverlapping
cross sections) are considered in different periods t and no interaction of
individuals across time periods (e.g., customers who see the advertisement
in earlier periods informing other individuals later) takes place. However,
we critically acknowledge that ruling out interactions (or interference)
between individuals might not be realistic in many situations, as more
thoroughly discussed in chapter 11. Second, we assume ATEs to be



stationary, in the sense that the treatment effects do not change over time,
such that placing an advertisement in an earlier period is as effective as in a
later period. Under such a homogeneity of ATEs across time, it follows that
μt(dt) = μt′(dt′), for two time periods t ≠ t′, and furthermore, μt(dt) = μ(d).

In this setup with homogeneous ATEs across time, we may focus on
learning the optimal treatment with regard to the overall mean potential
outcome μ(d), rather than μt(dt), in different outcome periods. Formally, our
goal is to find the treatment that maximizes μ(d), which we denote by d* =
maxd∈{0, 1, …, J}μ(d). Somewhat related to the discussion on optimal policies
in section 5.4, we define a regret function R�(d), which corresponds to the
difference in mean potential outcomes (or ATEs) under the optimal
treatment d* versus some other treatment assignment d, when taking into
account (i.e., summing over) all periods �:

If we knew the optimal treatment a priori, then we could exploit this
knowledge for assigning d* in all treatment periods. In this case, the regret
function R�(d) would be zero, while the mean outcome (or ATE) would be
maximized, by selecting the most effective advertisement throughout the
evaluation window. However, the motivation for reinforcement learning is
exactly that we typically do not know the optimal treatment, but need to
learn it by assigning various treatments and exploring their performance
across multiple periods. Ideally, we would explore (i.e., compare various
treatments in terms of their performance) and find the optimal treatment
based on relatively few periods to assign d* in the remaining periods in
order to minimize regret. However, if too few periods are used for
exploration, we may end up with a suboptimal treatment choice due to the
variance related to the estimation of μ(D) for various treatment assignments
in the data, which would entail a nonzero regret. For this reason,
reinforcement learning faces an exploration-exploitation trade-off. Basing
exploration on more periods and data increases the chance to find the
optimal treatment and improve future performance, but it also reduces the
number of individuals to which the currently optimal treatment can be
assigned to maximize immediate performance.



Let us consider the case that treatments are randomly assigned in an
experiment (as frequently conducted for advertisement campaigns on online
platforms), such that the assumptions in expression (3.53) in chapter 3 are
satisfied. Ideally, we would like to find an assignment rule across periods
that allows optimally trading off exploration and exploitation in a way that
minimizes regret, or at least permits keeping it acceptably small, through
learning over time. One rule that does not appear appropriate in this context
would be to randomly assign each treatment with equal probability (i.e.,
with proportion 1/( J + 1) in all time periods. While this might permit
learning μ(d) for any treatment rather well based on averaging the estimates
of E[Yt|Dt = d] across time periods and therefore might perform well in
terms of exploration, it is suboptimal in terms of exploitation. The reason is
that the share of individuals assigned to any treatment is fixed and thus does
not depend on the treatment performance in the data. After starting off by
randomly assigning treatments with equal probability to explore their
performance in the absence of any prior knowledge about their
effectiveness, we would prefer to gradually assign ever more individuals to
treatments that up to the current period look most promising in our data, a
process known as adaptive randomization.

We confine our discussion to one popular adaptive randomization
scheme called Thompson sampling (see Thompson (1933)). It is based on
Bayesian updating to modify the treatment assignment as more information
on the effectiveness of the various treatments from previous periods
becomes available. Before getting started, we need to define a presumed
prior distribution of the potential outcomes under each treatment d in the
nonobserved period t = 0, denoted by ; that is, prior to the periods in
which we observe the treatments and outcomes. Likewise, let us denote by 

 the prior distribution in period t = 0 across all treatment states. A
neutral or uninformative prior distribution, for instance, could consist of
assuming a constant mean across the potential outcome distributions of any
treatment, in line with a null hypothesis of ATEs that are zero for any of the
treatments. After defining the prior, we conduct the following steps for each
period t ∈{1, 2, …, �}, in which we observe the treatments and outcomes:

1. In each period t, we compute the probability that a specific treatment
assignment d is optimal based on the performance in the previous periods



. Note that in the first period t = 1, this
probability is solely based on the prior distribution, and our
uninformative prior implies that every treatment is assigned with equal
probability in period t = 1. This is generally no longer the case if t > 1
and learning about the performance of the various treatments sets in.

2. We randomly draw treatments Dt from a multinomial distribution in
which the treatment assignment probabilities correspond to their
probabilities to be optimal, . This implies that treatments that
performed better in previous periods tend to be assigned to a higher
proportion of individuals in the current period than previously worse-
performing treatments (but the proportion also depends on the variance
and thus the uncertainty in effect estimation).

3. We assess the outcomes in the various treatment groups, Yt = Yt(Dt), to
obtain a Bayesian update of the joint potential outcome distribution, 
, which is known as posterior distribution and will serve as the prior in
the next period, t + 1.

Thompson sampling relies on probability matching in the sense that it
bases treatment assignment on the probability that a specific treatment is
optimal, according to the treatment’s performance observed in past data
(and the prior distribution). The procedure continues to explore all
treatments that might be optimal according to their respective posterior
probability, but shifts sampling away from (and thus, gradually discards)
those treatments that clearly underperform. Thompson sampling can attain a
near-optimal regret bound. This implies that Thompson sampling may
almost attain the theoretical lower bound of the regret in equation (5.14)
inherent even in the best-performing methods of reinforcement learning due
to the exploration-exploitation trade-off; see Lai and Robbins (1985) and
Agrawal and Goyal (2013) for further discussion.

We may adapt Thompson sampling to more complicated setups than the
one considered so far, to nonstationary systems where μt(dt) is time-varying
such that treatment effectiveness may change across periods. In this case,
exploring should never fully stop in order to take account for time-induced
changes in mean potential outcomes. So long as μt(dt) changes moderately
enough over time to still permit distinguishing effective from less effective
treatments within a minimum amount of periods, one feasible approach is to



simply discard observations beyond a specific number of periods in the past
when applying Thompson sampling. We would then rely only on more
recent observations (and the original prior distribution) for forming the
posterior distribution . A further option would be to integrate a model
with a discount factor that puts less weight on periods further in the past, as
discussed in Russo et al. (2020).

For the sake of causal analysis, we might not only be interested in
learning the optimal treatment, but also in inference, such as conducting
hypothesis tests to verify if one treatment (particularly the best one) yields a
significantly higher or different mean outcome than another one (such as
the second best one). However, due to the adaptive randomization scheme
and the time dependence it introduces, the probably most intuitive estimator
of μ(d) based on averaging the observed outcomes of all observations i with
Di = d across all periods is asymptotically not normally distributed.
Therefore, conventional t-statistics do not yield valid p-values and
confidence intervals. As discussed in Hadad et al. (2021), we can solve this
problem by using an adaptively weighted estimator of μ(d) that satisfies
asymptotic normality. An example is the following IPW-based approach
with normalized weights, which relies on the optimal treatment
probabilities :

We note that for notational convenience, index i for a specific observation
(as well as summation over i) has been dropped from the variables in
equation (5.15).

Related to the discussion in section 5.5, we may apply reinforcement
learning in subsets of the data defined upon values of observed covariates X
(e.g., gender) to find the optimal treatment within subsets; for instance, see
Caria et al. (2020). This permits taking into account potential effect
heterogeneities across these subsets when learning the optimal treatment
assignment. Also with regard to such heterogeneous effects, we face a type
of exploration-exploitation trade-off. While considering more subsets (with
in terms of X more homogeneous subjects within subsets) permits us to
better tailor treatments to specific subpopulations, the exploration process



might take longer due to a smaller sample size within each subset, which
entails a greater variance of the estimation of treatment effects.



6
Instrumental Variables

6.1 Evaluation of the Local Average Treatment Effect

The selection-on-observables assumption discussed in chapter 4 fails if
selection into treatment is driven by unobserved factors that affect potential
outcomes even conditional on observed covariates X. As an example, let us
consider an experiment in which access to a training program is randomly
assigned, but some of the individuals who are offered the training do not
comply and decide not to participate, a scenario known as imperfect
compliance. If compliance behavior is influenced by unobserved
characteristics, such as ability or motivation, which also affect the outcome,
such as wages, a comparison of treated and nontreated outcomes does not
yield the causal effect of the training even when controlling for covariates.
Can we nevertheless exploit our broken experiment in a way that permits
evaluating a causal effect?

Indeed, this is feasible if instrumental variable conditions hold, as first
formulated in Wright (1928). More concisely, if the random treatment
assignment satisfies an exclusion restriction, implying that it does not
directly affect the outcome other than through actual treatment (e.g.,
training) participation, the assignment may serve as an instrumental
variable (IV), henceforth denoted by Z. The latter permits identifying the
treatment effect among those subjects complying with the assignment, the
compliers. The intuition is that the causal effect of Z on Y, which is



identified by the randomization of Z, exclusively operates through the
causal effect of Z on D among compliers due to the exclusion restriction.
Therefore, scaling (or dividing) the average effect of Z on Y by the average
effect of Z on D yields the average effect of D on Y among compliers; see
the discussions by Imbens and Angrist (1994) and Angrist, Imbens, and
Rubin (1996). This causal effect is commonly referred to as the complier
average causal effect (CACE) or the local average treatment effect (LATE),
as it refers to the local subpopulation of compliers rather than the total
population.

To formally introduce the IV assumptions that permit identifying the
LATE among compliers, let us for the sake of simplicity assume that both
instrument Z and treatment D are binary (like randomization into and
participation in a training), such that z, d ∈{0, 1}, and introduce some
further notation. Similar to the potential outcome notation used so far, we
denote by D(z) the potential treatment decision if instrument Z is set to
value z (either 1 or 0). This permits defining four compliance types in terms
of how the treatment reacts to the instrument.

Individuals satisfying (D(1) = 1, D(0) = 0) are compliers, as they only
take the treatment when receiving the instrument (Z = 1), while abstaining
when not receiving the instrument (Z = 0), as intended in a randomized
experiment. The remaining three compliance types are all noncompliers.
One group are never takers, who do not take the treatment regardless of the
instrument. Never takers thus satisfy (D(1) = D(0) = 0) due to their low
willingness to attend a training. Always takers, on the other hand, always
take the treatment even when the instrument is zero, satisfying (D(1) = D(0)
= 1) due to their high willingness to receive the training. Finally, defiers
counteract the instrument assignment by taking the treatment when the
instrument is zero and abstaining from the treatment when the instrument is
1, satisfying (D(1) = 0, D(0) = 1). For this reason, they defy the random
assignment in an experiment by always choosing the opposite treatment
than foreseen by the randomization protocol. The evaluation of the LATE
typically hinges on ruling out the existence of such defiers, which can be
plausible in certain, but not all, empirical applications, as discussed further
later in this chapter. Table 6.1 summarizes the compliance types in terms of
their treatment behavior.



Table 6.1
Compliance types.

D(1) D(0) Type

1 1 Always takers
1 0 Compliers
0 1 Defiers
0 0 Never takers

As a further modification of our previous notation, let us for the moment
denote the potential outcome by Y(z, d): that is, as a function of both the
instrument and the treatment. Then we can state the IV assumptions for the
identification of the LATE formally as follows:

The first line of expression (6.1), which is frequently referred to as IV
validity, consists of two assumptions. The first states that the IV is
independent of the potential treatments as well as the potential outcomes,
such that there are no variables jointly affecting Z on the one hand and D or
Y (or both) on the other hand. This assumption also implies the
independence of the instrument and the compliance types, as the latter are
defined upon D(1), D(0). The independence assumption is satisfied by
design if the instrument is successfully randomized, as in an experiment
that provides access to a training program.

The second assumption in the first line of expression (6.1) states that the
instrument does not affect the potential outcome conditional on the
treatment, implying that Z does not have a direct effect on Y other than
through D, which is the previously mentioned exclusion restriction. For this
reason, we may go back to our conventional notation of the potential
outcome by representing it as a function of the treatment only: Y(d). The
exclusion restriction holds if mere assignment to a treatment such as a
training does not have a direct effect on the outcome of interest, such as
through increasing motivation or frustration due to being offered the
training or not, respectively. This appears particularly plausible in
experiments in which study participants do not even know the assignment
status, such as in medical trials where individuals in the control group are



assigned to placebo treatments that they cannot distinguish from the actual
treatment (like a vaccine).

But there are also examples in which the exclusion restriction can be
challenged even if the instrument is randomized. For instance, Angrist
(1990) considers the US draft lottery for military service during the
Vietnam War as instrument (Z) for the treatment variable veteran status (D)
to investigate the effect of the latter on earnings (Y). However, empirical
evidence such as that given by Card and Lemieux (2001) suggests that the
draft lottery not only affected veteran status, but also induced college
enrollment because military service could be postponed or avoided through
college deferments. If tertiary education affects earnings, this implies a
violation of the exclusion restriction via an alternative (in this case,
educational) causal mechanism through which the IV affects the outcome.

For this reason, scrutinizing the validity of IVs that appear plausible at a
first glance is very important, particularly when the instrument is not
randomly assigned by the analyst or researcher, such that both the
independence assumption and the exclusion restriction may appear
questionable. This is the case, for instance, for a well-known instrument in
labor economics based on the month or quarter of birth (Z). The instrument
arguably affects education (D) through regulations about school starting age
and might be exploited for assessing the causal effect of education on later
life earnings (Y) or other outcomes of interest; see Angrist and Krueger
(1991). However, it is well documented (for instance in Bound, Jaeger, and
Baker (1995) and Buckles and Hungerman (2013)) that seasonal birth
patterns vary systematically with family background characteristics like
maternal age or education, family income, and health, all of which may
affect later life income, such that IV validity likely fails. As discussed in
Deaton (2010), there are many other suspicious instruments that have been
applied in empirical studies. Examples range from macroeconomic
evaluations of the causes of economic growth, as summarized in Bazzi and
Clemens (2013), to the use of instruments assigned by “nature” like twin
births; for instance, see the discussions in Rosenzweig and Wolpin (2000)
and Farbmacher, Guber, and Vikström (2018).

Figure 6.1 provides a framework that satisfies IV validity, given that no
unobserved characteristics omitted from the causal graph jointly affect Z
and Y, implying that the instrument is (as good as) random. Furthermore,



the exclusion restriction is satisfied because Z affects Y only through D. In
contrast to the instrument, however, the treatment may be affected by
unobserved variables, denoted by U, which also influence Y, which is
commonly referred to as treatment endogeneity. The causal effects of U are
given by dotted lines with arrows to highlight that they are due to
unobserved characteristics and thus cannot be measured.

Figure 6.1
An instrumental variable approach.

The second line of expression (6.1) imposes two assumptions on the
association of the treatment and the instrument. The first says that the
potential treatment state of any subject does not decrease (i.e., is weakly
positive) in the instrument when switching Z from 0 to 1. As demonstrated
in Vytlacil (2002), this assumption is equivalent to imposing a threshold
crossing model on the treatment decision, in which the treatment is an
additively separable function of the instrument and an unobserved term and
takes the value of 1 whenever the function on the instrument is greater than
or equal to the unobserved term. The latter might therefore be interpreted as
the disutility or cost of treatment, such as reluctance to participate in a
training. Formally,

where V is a scalar index of unobservables and η(Z) is a general function of
Z.

Alternatively to imposing such a weak positive monotonicity, we could
impose weak negative monotonicity (Pr(D(1) ≤ D(0)) = 1). We will,
however, omit the latter case in this discussion because it is symmetric in
the sense that weakly negative monotonicity can easily be turned into



weakly positive simply by recoding the instrument as 1 −Z. Weak positive
monotonicity rules out the existence of defiers (D(1) = 0, D(0) = 1) because
for this group, it holds that D(1) < D(0). By assumption, the population thus
only consists of always takers, never takers, and compliers. Weak positive
monotonicity is satisfied by design in randomized experiments with one-
sided noncompliance (see Bloom (1984)), which guarantees that no subject
randomized out of a treatment (like training) can manage to sneak in and
participate anyway. This implies that neither defiers with (D(1) = 0, D(0) =
1) nor always takers with (D(1) = D(0) = 1) exist because Pr(D(0) = 1) = 0.

Even in experiments where Pr(D(0) = 1) > 0, the presence of defiers may
appear implausible because it would point to counterintuitive behavior
according to the randomization protocol. In other IV settings, however, the
assumption might be more disputable. Reconsidering the quarter of birth
instrument, positive monotonicity appears plausible in the US context at a
first glance. Arguably, among students entering school in the same year,
those who were born in an earlier quarter can drop out after fewer years of
completed education when turning 16, which is the age when compulsory
schooling ends, than those born later, particularly after the end of the
academic year.

However, strategic postponement of school entry due to redshirting or
unobserved school admission policies may reverse the relation of education
and quarter of birth for some individuals who are thus defiers, see the
discussions by Aliprantis (2012) and Barua and Lang (2009). For this
reason, we need to scrutinize monotonicity of D in Z with similar care as IV
validity. In this context, it is worth noting that the joint satisfaction of IV
validity and monotonicity is partially testable in the data; for instance, see
the tests proposed by Kitagawa (2015), Huber and Mellace (2015),
Mourifié and Wan (2017), and Farbmacher, Guber, and Klaassen (2020).

The second assumption in the second line of expression (6.1) imposes
the existence of a first-stage effect of the IV on the treatment. Together with
the previously discussed assumptions, E[D|Z = 1] −E[D|Z = 0] ≠ 0 implies
the existence of compliers in the population such that Pr(D(1) = 1, D(0) =
0) > 0, which is the subgroup for which we can assess causal effects based
on the IV approach. This assumption is testable by verifying how strongly Z
affects D in the data: that is, by investigating the size and statistical
significance of the effect of the instrument on the treatment. Taken together,



the assumptions in expression (6.1) permit identifying the LATE on the
compliers, formally defined as

We note that when aiming for an average effect like the LATE, we may
actually replace full independence between Z and Y(z, d) in expression (6.1)
by the weaker mean independence within compliance types: E[Y(z, d)|D(1),
D(0), Z = 1] = E[Y (z, d)|D(1), D(0), Z = 0] = E[Y (z, d)|D(1), D(0)] for z, d
∈{0, 1}. Likewise, we can relax the exclusion restriction to an average-
based version: E[Y(1, d)|D(1), D(0)] = E[Y (0, d)|D(1), D(0)] = E[Y
(d)|D(1), D(0)]. The stronger assumptions stated in expression (6.1),
however, are required for assessing distributional features like quantile
treatment effects as discussed in section 4.8. Similar to the discussion in
chapter 4, this distinction of assumptions frequently does not appear that
relevant from a practical perspective, as setups in which mean
independence holds while full independence does not might seem
unnatural. For instance, if one assumes that an IV is mean independent of
the potential hourly wage, it seems reasonable that it is also mean
independent of the logarithm of the potential hourly wage. As the latter is a
nonlinear transformation of the original potential outcome, this implies
independence with respect to higher moments as well. Therefore,
strengthening mean to full independence often comes with little cost in
terms of credibility.

Under the assumptions in expression (6.1) and a binary treatment and
instrument, the LATE is identified based on the difference in conditional
mean outcomes E[Y|Z = 1] − E[Y |Z = 0], which corresponds to the
intention-to-treat (ITT) or reduced form effect of the instrument on the
outcome, and the corresponding difference in conditional treatment means
E[D|Z = 1] − E[D|Z = 0]. The latter gives the first-stage effect and is equal
to the share of compliers (i.e., E[D|Z = 1] − E[D|Z = 0] = E[D(1) − D(0)] =
Pr(D(1) = 1, D(0) = 0)) because D(1) −D(0) is 1 for compliers and 0 for the
two remaining compliance types (not ruled out by weakly positive
monotonicity) of never takers and always takers, whose treatment is
unaffected by Z. For this reason, the effect of Z on Y is necessarily zero for
always takers and never takers, as the instrument cannot affect the outcome



other than through a change in the treatment under the exclusion restriction.
It therefore follows (by an application of the law of total probability with
regard to the various compliance types) that the ITT corresponds to the
first-stage effect (or complier share) multiplied by the LATE among the
compliers, ΔD(1)=1, D(0)=0, while the contribution of the never takers and
always takers to the ITT is zero.

For this reason, we obtain the LATE by dividing (or scaling) the ITT by
the first-stage effect. Formally,

The ratio of the difference in conditional means E[Y|Z = 1] − E[Y |Z = 0]
and E[D|Z = 1] −E[D|Z = 0] in the second line of equation (6.4) is known as
the Wald estimand, which we can straightforwardly estimate based on the
sample analogs of the four conditional outcome and treatment means; see
Wald (1940). A numerically equivalent approach consists of (1) regressing
Y on a constant and Z as well as D on a constant and Z and (2) dividing the
coefficient on Z in the former regression (i.e., the ITT) by the coefficient on
Z in the latter regression (i.e., the first stage). Yet another equivalent
approach is a two-stage least squares (TSLS) regression. The latter consists
of a linear (first-stage) regression of D on a constant and Z and a linear
(second-stage) regression of Y on a constant and the predicted treatment
from the first stage (i.e., the estimate of E[D|Z]). Any of these three
approaches yields the same -consistent and asymptotically normal
estimator of ΔD(1)=1, D(0)=0 under specific statistical conditions (like a complier
share that is not too close to zero).

However, a practical advantage of TSLS is that it directly yields the
(optionally homoscedastic or heteroscedastic) standard error of the LATE
estimate, which (asymptotically) appropriately accounts for estimation
uncertainty in both the first- and second-stage regression. Furthermore,
TSLS can also be used for the estimation of the mean potential outcomes
(rather than the effect) among compliers (i.e., E[Y(1)|D(1) = 1, D(0) = 0]
and E[Y(0)|D(1) = 1, D(0) = 0], respectively). This is obtained by regressing
Y·D on a constant and D or Y· (1 −D) on a constant and (1 −D) in the second



stage, while regressing D or (1 −D) on a constant and Z in the first stage.
Likewise, we may estimate the cumulative distribution functions of the
compliers’ potential outcomes at some outcome value y when replacing Y
by I{Y≤ y} in such TSLS regressions; see the discussion in Imbens and
Rubin (1997).

An important condition for a satisfactory performance of LATE
estimation and inference (i.e., the computation of standard errors,
confidence intervals, and p-values) in small or moderate samples is that the
estimated first stage effect of Z on D is strong enough: that is, not too close
to zero. It is easy to see that if E[D|Z = 1] −E[D|Z = 0] approaches zero, the
Wald estimand goes to infinity, which implies that the variance of LATE
estimation explodes. This issue is known as the weak instrument problem,
meaning that the impact of Z on D is so weak that causal inference based on
conventionally computed standard errors and confidence intervals may be
unreliable and misleading, particularly if the sample size is not very large,
as discussed in Staiger and Stock (1997). Luckily, there is an alternative
approach to inference and computing confidence intervals suggested in
Anderson and Rubin (1949), which is valid even under weak instruments.
Stock, Wright, and Yogo (2002) and Keane and Neal (2021), among others,
provide surveys on further inference methods that are tailored to weak
instruments.

It is interesting to note that even when relaxing the monotonicity
assumption Pr(D(1) ≥ D(0)) = 1 (and thus allowing for defiers), the Wald
estimand might still yield a LATE-type causal effect, given that certain
conditions hold. For instance, equation (6.4) identifies the LATE on
compliers if this LATE is equivalent to that on the defiers (see Angrist,
Imbens, and Rubin (1996)), which, however, appears to be a disputable
assumption in many applications. Further, de Chaisemartin (2017) shows
that the Wald estimand corresponds to the LATE among a subpopulation of
compliers, if some share of the compliers is equal to the defiers in terms of
average effects and population size. The Wald estimand then yields an even
more local effect among the comvivors: that is, those compliers who
outnumber the defiers resembling a share of compliers in terms of size and
effects. Under more general forms of defiance, the Wald estimand might at
least yield the correct sign of the LATE, such as under stochastic
monotonicity. The latter implies the existence of at least as many compliers



as defiers conditional on any pair of potential outcomes Y(1), Y (0); see the
discussion by Small, Tan, Lorch, and Brookhart (2017).

To demonstrate LATE estimation in R, we reconsider the Job Corps (JC)
data previously analyzed in section 3.1 in chapter 3, where we regarded
random assignment to JC as the treatment. However, we will subsequently
consider this variable to be the instrument, while actual participation in a
training in the first year will serve as the treatment (which may deviate from
random assignment). After loading the causalweight package and the JC
data, we define the instrument, Z=JC$assignment, the treatment,
D=JC$trainy1, and the outcome, Y=JC$earny4 (namely, weekly earnings
in the fourth year). We then compute the ITT effect of Z on Y based on the
differences in mean outcomes of Y given Z = 1 and Z = 0 and store the
result in an R object: ITT=mean(Y[Z==1])-mean(Y[Z==0]). We recall that
square brackets permit us to select observations that satisfy specific
conditions, in our case specific values of the instrument. In an analogous
manner, we calculate the first-stage effect of Z on D:
first=mean(D[Z==1])-mean(D[Z==0]). Following equation (6.4), we then
estimate the LATE as the ratio of the ITT and the first stage effect and store
it in an object named LATE. Finally, we call the ITT, first, and LATE objects
to inspect the results. The box here provides the R code for these steps.

Running the code yields an ITT estimate of roughly 16 US dollar (USD),
which is exactly the same as the effect obtained in the empirical example at
the end of section 3.1 when regarding JC assignment as the treatment
(which ignores noncompliance), rather than as the instrument, as in the
current context. The first stage effect of Z on D amounts to 0.34, implying
an estimated complier share of 34 percent. Therefore, the remaining 66



percent of observations are either never takers or always takers of the
training program according to our estimate, given that the IV assumptions
in equation (6.1) hold. Finally, the estimated LATE among compliers
corresponds to an increase of roughly 47 USD in weekly earnings.

In the next step, we show that we obtain the very same estimate when
using TSLS regression. To this end, we load the AER package by Kleiber
and Zeileis (2008), which contains the ivreg command for TSLS regression.
Similar to the lm command, the ivreg command requires a regression
formula that specifies the outcome and the treatment (i.e., Y ∼ D), but also
an instrument for the endogenous treatment, which is separated from the
regression formula by a vertical bar (i.e., |Z). We save the TSLS results in
an object named LATE, which we wrap by the summary command, where
we also set vcov = vcovHC for computing heteroscedasticity-robust
standard errors.

Running the code yields the following output:

While the LATE estimate is the same as that previously obtained from
mean differences based on equation (6.4), the TSLS procedure has the
practical advantage that it also yields t-statistics and p-values. We see that
the LATE on compliers is highly statistically significant because the p-value
is very close to zero. As an alternative to using the ivreg command, we can
load the ivmodel package and run the command ivmodel(Y=Y,D=D,Z=Z) to
obtain an estimate of the LATE based on TSLS (and two further IV
approaches). Applying the ivmodel also yields Anderson and Rubin–type p-



values and confidence intervals, which are even valid under weak
instruments.

6.2 Instrumental Variable Methods with Covariates

In many applications, it may not appear credible that IV assumptions like
random assignment hold unconditionally: that is, without controlling for
observed covariates. This seems particularly relevant for observational data
in which the instrument is typically not explicitly randomized like in an
experiment. For instance, Card (1995) considers geographic proximity to
college as IV for the likely endogenous treatment education when assessing
its effect on earnings. On the one hand, proximity might induce some
individuals to go to college who would otherwise not (e.g., due to housing
costs associated with not living at home), implying a first-stage effect of the
instrument on the treatment. On the other hand, proximity likely reflects
selection into neighborhoods with a specific socioeconomic status that may
have an influence on earnings, implying that the IV is not random, but
associated with characteristics that have an impact on the outcome.

If all confounders that jointly affect the instrument and the outcome are
plausibly observed in the data, we can implement IV-based estimation
conditional on these observed covariates. For this reason, Card (1995)
includes a range of control variables like parents’ education, ethnicity,
urbanity, and geographic region. We note that this amounts to imposing a
selection-on-observables assumption, however, with regard to the
instrument rather than the treatment (as in chapter 4). In fact, the treatment
may be associated with unobservables affecting the outcome even
conditional on the covariates, while this must not be the case for the
instrument.

Let us now formally state the IV assumptions that permit identifying
causal effects among compliers conditional on covariates X in the binary
instrument and treatment case, following the discussion in Abadie (2003):



The first line of expression (6.5) requires the IV validity assumptions
provided in expression (6.1) to hold conditional on X, such that the
instrument is as good as randomly assigned and satisfies the exclusion
restriction among observations with the same covariate values. The second
line of expression (6.5) rules out the existence of defiers, but it also requires
the existence of compliers conditional on X, due to the nonzero conditional
first stage. Note that the threshold model-based representation of
monotonicity due to Vytlacil (2002) (see equation (6.2)) now may also
incorporate X as a factor driving the treatment decision to become

As in expression (4.1) of section 4.1, the first assumption in the third line
of expression (6.5) invokes that X is not a function of D and therefore must
not contain (posttreatment) characteristics that are affected by the treatment
(we note that X(1), X(0) refer to the states of the treatment, not the
instrument). The second assumption in the third line is a common support
restriction on the instrument propensity score Pr(Z = 1|X), implying that Z is
not deterministic in X such that subjects with both Z = 1 and Z = 0 exist for
all feasible covariate values. Figure 6.2 provides a framework satisfying IV
validity conditional on X, given that no unobserved characteristics omitted
from the causal graph jointly affect Z and Y. It is worth noting that
unobservables U may affect X or vice versa, as indicated by the
bidirectional dotted arrow, or both U and X might be caused by further
unobservables. Conditional on X, however, no unobservables jointly affect
Z and Y.



Figure 6.2
An instrumental variable approach with covariates.

As already mentioned, {D(z), Y(z′, d)}⊥Z|X in expression (6.5) is a
selection-of-observables assumption similar to expression (4.1), however
now with regard to the instrument rather than the treatment. Therefore, the
effects of Z on Y and on D are identified conditional on X, in analogy to the
identification of the effect of D on Y given X in chapter 4. For this reason,
replacing D by Z and the treatment propensity score p(X) = Pr(D = 1|X) by
the instrument propensity score Pr(Z = 1|X) in the identification results for
the ATE in equations (4.3), (4.36), (4.40), and (4.45) yields the ITT effect of
the instrument on the outcome, henceforth denoted by θ. In addition,
replacing Y by D in the identification results yields the first-stage effect of
the instrument on the treatment: that is, E[D(1) − D(0)], henceforth denoted
by γ. In the spirit of the Wald estimand in equation (6.4), the LATE is then
identified by dividing θ by γ:



If X consists of preselected covariates, the estimation of ΔD(1)=1, D(0)=0

under the assumptions given in expression (6.5) proceeds by (1) estimating
both the ITT effect θ and the first-stage effect γ based on one of the
treatment effect estimators introduced in chapter 4 and (2) dividing the ITT
estimate by the first-stage estimate. Under specific regularity conditions,
such an approach can be -consistent and asymptotically normal. The
potential methods for estimating  include matching or regression for a
conditional mean based-representation of the LATE as in the first line of
equation (6.7) as in Frölich (2007), inverse probability weighting (IPW)
based on the second line of equation (6.7) as in Donald, Hsu, and Lieli
(2014) or DR methods combining regression and IPW as in Tan (2006). We
also can use such methods for estimating distributional effects among
compliers like local quantile treatment effects (LQTEs); see, for instance,
Frölich and Melly (2013). Finally, a fully linear approach to IV estimation
based on the assumptions in expressions (6.5) is to simply add the
covariates as regressors in the TSLS regression discussed in chapter 6.
However, this latter estimator rules out effect heterogeneity in X and is
generally inconsistent if the covariates are nonlinearly associated with the
treatment and the outcome.

Rather than preselecting the covariates to be controlled for, we might
prefer learning the important confounders jointly affecting the instrument
and the outcome from a possibly large set of variables X in a data-driven
way, in analogy to the discussion in chapter 5. To this end, we can apply the
causal machine learning (CML) approaches outlined in section 5.2, such as
double machine learning (DML) to estimate θ and γ (and ultimately the
LATE) based on equation (4.45); for instance, see Belloni, Chernozhukov,
Fernández-Val, and Hansen (2017). Also, the analysis of effect
heterogeneity and optimal policies discussed in sections 5.4 and 5.5 extends
to the IV context by relying on doubly robust (DR) statistics (like efficient



influence functions) appropriate for conditional LATE estimation given
covariates X; for instance, see the discussion by Athey, Tibshirani, and
Wager (2019).

A general criticism of the LATE is that it may be of limited practical
relevance because it only refers to the subpopulation of compliers, which is
likely not as interesting as the total population targeted by the ATE. This
concern about external validity (i.e., the question how valid or
representative the LATE is for effects in other populations) might at least
partly be investigated or even alleviated with the help of observed
covariates. One approach consists of verifying how similar or different
compliers are in terms of covariates relative to the total population. To this
end, we can apply a method suggested by Abadie (2003), which permits
identifying a large range of complier-related statistics, including covariate
or outcome distributions, based on weighting observations by the following
function κ:

For instance,  yields the mean of X among
compliers, which permits judging how representative this subgroup is for
the total population in terms of average observed characteristics. This could
serve as the base for educated guesses about how strongly effects might
differ across compliers and the total population, even though causal effects
may generally also vary with unobserved characteristics not included in X.

Ruling out this latter possibility and imposing that average effects are
homogeneous across various compliance types conditional on X is a further
way to exploit covariates in the context of external validity; see Angrist and
Fernández-Val (2010) and Aronow and Carnegie (2013). Formally, such a
conditional effect homogeneity assumption can be stated as follows:

In contrast to our previous IV assumptions, equation (6.9) rules out that
effect heterogeneity is driven by unobserved characteristics, which
importantly restricts the source of treatment effect heterogeneity. This is, for
instance, not consistent with the Roy model popular in economics for



motivating selection into treatment based on unobserved outcome gains due
to treatment participation (Roy 1951).

If we are willing to impose the assumptions in expressions (6.9) and
(6.5) (where in fact monotonicity could be relaxed to stochastic
monotonicity, as discussed in section 6.1, conditional on X), we can identify
the ATE by averaging over the conditional LATE given X, denoted by
ΔD(1)=1, D(0)=0, X = E[Y(1) − Y (0)|D(1) = 1, D(0) = 0, X], in the total population:

where the second equality follows from the fact if the IV assumptions hold
conditional on the covariates, then a conditional version of the Wald
estimand given X identifies ΔD(1)=1, D(0)=0, X. If several instruments are
available, equation (6.9) can even be tested because any instrument should
entail the same conditional effect ΔD(1)=1, D(0)=0, X under this homogeneity
assumption.

As discussed in Angrist (2004), an alternative condition to the effect
homogeneity assumption in equation (6.9), which also establishes the
external validity of the LATE, is that different compliance types have the
same mean potential outcomes, at least conditional on X. This implies a
selection-on-observables assumption with regard to the treatment that is
closely related to that discussed in chapter 4, such that instruments are in
fact not required for identification. However, the instrument can be used for
partly verifying whether potential outcomes are homogeneous across
compliance types—namely, for testing the equality of mean potential
outcomes across treated compliers and always takers, as well as across
nontreated compliers and never takers conditional on X; see de Luna and
Johansson (2014). In fact, a statistically significant effect of Z on Y,
conditional on D and X, points to a violation of homogeneity in mean
potential outcomes. Donald, Hsu, and Lieli (2014) suggest a related but
different testing approach that verifies whether the LATE estimated based
on the IV assumptions statistically significantly differs from the ATET
estimated under the selection-on-observables assumption with regard to the
treatment of chapter 4 under one-sided noncompliance, ruling out always



takers and defiers. This test is based on the fact that under one-sided
noncompliance, the LATE coincides with the ATET.

Yet another path to the external validity of IV methods is to assume that
any individual’s rank in the population’s distribution of the potential
outcome under treatment Y(1) is the same as the rank under no treatment
Y(0), implying rank invariance, or at least not systematically different,
implying rank similarity; see Chernozhukov and Hansen (2005). This
approach applies to continuously distributed outcomes and means that an
individual earning the median wage under treatment would also earn the
respective median wage under nontreatment (rank invariance) or only
randomly deviate from the median wage (rank similarity), at least when
controlling for observed covariates X. While such outcome rank-related
assumptions permit the evaluation of quantile and average treatment effects
in the total population (rather than among compliers alone) without
imposing monotonicity of D in Z, the price is that they substantially restrict
treatment effect heterogeneity.

As an illustration, let us consider the educational choices of a college
degree versus vocational training as treatment. Rank stability or similarity
assumptions rule out that a college graduate reaches a systematically higher
or lower rank in the potential wage distribution under college graduation
than she or he would have reached in the potential wage distribution under a
vocational training (when obtaining a vocational degree instead of a college
degree). However, it appears likely that given their abilities and preferences,
some individuals are relatively more competitive either in the academic or
vocational track compared to others, such that rank invariance or stability
must be carefully scrutinized in the empirical application at hand. One
approach to estimating conditional quantile treatment effects given X at an
outcome rank τ (e.g., τ = 0.5 for the median outcome) under these
assumptions is to iteratively find the value βD(τ) that entails a zero
coefficient on instrument Z in a quantile regression of the modified outcome
Y− DβD(τ) on a constant, X, and Z. Estimating βD(τ) across all ranks τ ∈(0,
1) and averaging the estimates then yields an estimate of the conditional
average treatment effect (CATE) given X.

To implement LATE estimation when controlling for covariates in R, we
load the causalweight package, which contains an IPW-based estimator, and



the LARF package by An and Wang (2016), which includes the 401(k)
pension data on tax-deferred retirement plans in the US previously analyzed
by Poterba, Venti, and Wise (1998). The data set named c401k consists of
9,275 observations with information on the eligibility for a 401(k) pension
plan, which serves as instrument Z, as well as individual participation in
such a plan, which is our treatment D. The outcome variable is net family
financial assets in 1,000 USD. Accordingly, we define D=c401k[,3]
(because treatment participation is indicated in the third column of the
c401k data), Z=c401k[,4], and Y=c401k[,2].

Eligibility to pension plans is decided by employers and is likely
nonrandom. For this reason, we control for socioeconomic characteristics X
like an individual’s income, age, gender, and family status when running
our IV estimation, assuming that the instrument is conditionally
independent of unobserved individual factors affecting the outcome (like
preferences for savings). The covariates are stored in columns 5 to 11 of the
data (i.e., c401k[,5:11]), which we wrap by the as.matrix command to turn
the data into a numeric matrix (as required by the IV procedure) and save it
in an object named X. We then set a seed (for the reproducability of our
estimates) and feed Y, D, Z, and X into the lateweight command for IPW-
based LATE estimation using a probit specification for the instrument
propensity score. We also set the argument boot=299 to estimate the
standard error based on 299 bootstrap replications. We store the results in
an object named LATE and call LATE$effect, LATE$se.effect, and
LATE$pval.effect to investigate the LATE estimate, its standard error, and
the p-value. The box here provides the R code for the various steps.



The LATE estimate amounts to 13.096, suggesting that participation in a
401(k) pension plan increases net financial assets by roughly 13,096 USD.
The standard error of 2.172 is relatively small, and therefore the p-value is
very close to zero, such that we can safely reject the null hypothesis of a
zero treatment effect among compliers. We also take a look at the first-stage
effects of the eligibility instrument Z on participation D along with the
standard error by calling LATE$first, LATE$se.first, and LATE$pval.first:

The estimated first-stage effect corresponds to 0.684, implying a
complier share of 68.4 percent. The standard error is rather small (0.008),
and therefore the p-value is very close to zero. Finally, we reestimate the
LATE and first-stage effect based on DML, as introduced in section 5.2
rather than IPW. To this end, we load the npcausal package previously
considered in section 4.8, set a seed, and feed Y, D, Z, and X into the ivlate
command for DML-based LATE estimation using an ensemble method (see
section 5.3):

Running the code yields the following output:

The LATE estimate of roughly 11.830 provided in the first line of the
column est is rather similar to our previous result, and again highly
statistically significant. This also applies to the first-stage effect provided in
the second line, which amounts to roughly 0.683 (or 68.3 percent in terms
of the complier share).



6.3 Nonbinary Instruments and Treatments

In contrast to the previous sections, we will henceforth consider the case
that the instrument is not binary, but multivalued and possibly even
continuous, while maintaining a binary treatment (which only takes the
values 1 and 0). This implies that we can assess LATEs with regard to any
pair of instrument values z′ > z (which now may be different from 1 and 0)
satisfying the IV assumptions. Let us assume, for instance, that instrument
Z is a randomized cash incentive to obtain a medical treatment like a
vaccination, meaning that z′ and z correspond to two financial incentives
(e.g., 20 versus 10 USD). Such choices of such pairs of instrument values
generally entail different first stages (i.e., different E[D|Z = z′] − E[D|Z = z]
when not controlling for any covariates), and thus different complier
populations.

Particularly interesting in the context of the previous discussion about
external validity in section 6.2 is choosing z′ and z in a way that entails the
largest possible complier population. In this context, this would amount to
basing LATE estimation as discussed in the previous sections of this chapter
on individuals with the highest and lowest cash incentives. It is worth
mentioning that instead of directly conditioning on the value of instrument
Z in IV estimation, we may alternatively use the treatment propensity score
given Z and possibly X as the instrument when imposing the conditional IV
assumptions given X in expression (6.5); see the discussion in Frölich
(2007). Denoting the treatment propensity score by p(Z, X) = Pr(D = 1|Z,
X), this implies that the LATE is (in analogy to equation (6.7) in section 6.2)
identified by

The propensity score–based approach appears particularly useful if Z
consists of several instruments (e.g., cash transfers combined with
geographic proximity to treatment centers), as the elements in Z can then be
straightforwardly collapsed into a single instrument, p(Z, X). This, however,
implies that the monotonicity assumption must hold with regard to this
newly created combined instrument p(Z, X) rather than a single instrument
alone. As discussed in Mogstad, Torgovitsky, and Walters (2020), such a



monotonicity condition implicitly rules out that some subjects only comply
with one instrument (e.g., cash transfers) and others only with another (e.g.,
geographic proximity) in terms of treatment choice, which may not be
plausible depending on the empirical context. For this reason, Mogstad,
Torgovitsky, and Walters (2020) consider a weaker, partial monotonicity
assumption, which imposes weak monotonicity of the treatment in one
instrument (e.g., cash transfers) conditional on specific values of the other
(e.g., proximity). We also note that the common support assumption must
now hold with respect to p(Z, X), implying that for any covariate value x in
the population, there are observations with both p(z′, x) and p(z, x), or
equivalently, z′ and z.

A continuously distributed instrument even permits us to evaluate a
continuum of complier effects under appropriately adapted IV assumptions.
Specifically, a marginal change in the instrument yields the marginal
treatment effect (MTE); for instance, see the discussion in Heckman and
Vytlacil (2001, 2005). Formally, the MTE is the average treatment effect,
conditional on the covariates and the unobserved term in equation (6.6), or
the unobserved term in equation (6.2) alone if there are no X variables to be
controlled for:

Technically speaking, the MTE is the limit of the LATE when the change
in the instrument (i.e., the difference in z′ and z) goes to zero. This effect
can be interpreted as the average effect among individuals who are
indifferent between treatment or nontreatment, given their values of
instrument Z and covariates X: that is, for whom it holds that η(Z = z, X = x)
= v in equation (6.6). In this context, it is worth noting that we can
normalize the unobserved term V without loss of generality so that the
normalization, henceforth denoted by , is uniformly distributed and takes
values between 0 and 1 (i.e.,  ∼ Uniform[0, 1]). In fact,  corresponds to
the cumulative distribution function of V:  = FV . As discussed in Heckman
and Vytlacil (1999), we can then estimate the MTE in equation (6.12) by the
local IV (LIV). The latter uses the propensity score p(Z, X), as well as the
normalization , and corresponds to the first derivative of the conditional
mean outcome given X and p(Z, X) with regard to to p(Z, X):



The LIV representation in equation (6.13) demonstrates that MTEs can
be recovered based on variation in p(Z, X), given that the assumptions in
expression (6.5) hold. Under a sufficiently strong continuous instrument
with a sufficiently large range of values, we may theoretically evaluate the
MTEs for all feasible values of X and V to ultimately assess the ATE by
averaging over the various MTEs in the population. In real-world
applications, however, such strong instruments are typically unavailable.
Therefore, the MTE is only identified over the common support of p(Z, X)
across all values of X: that is, those values of the propensity score that exist
across all covariate values in the population. This typically limits the
feasibility of flexible, nonparametric MTE estimation (e.g., by kernel
regression, as discussed in section 4.2), in particular if X contains many
variables and Z is not strong or has a limited range of values.

One approach to alleviate this problem at the cost of substantially
restricting the generality of the treatment effect model is to replace the
independence assumption {D(z), Y(z′, d)}⊥Z|X by a much stronger version;
for instance, see Carneiro, Heckman, and Vytlacil (2011):

In contrast to the previous conditional independence assumption in
expression (6.5), condition (6.14) imposes independence between X and
unobservables affecting D or Y. While covariates X (e.g., labor market
experience) may still jointly affect Z on the one hand and D and/or Y on the
other hand, they must not be associated with unobservables (e.g., ability)
that affect D, Y, or both. Reconsidering the causal graph in figure 6.2 in
section 6.2, this rules out the dotted causal arrows between U and X. In this
arguably special case, we can evaluate the MTE over the entire
unconditional support of p(Z, X) (i.e., any values the propensity score might
take), such that common support across values of X is not required.

Brinch, Mogstad, and Wiswall (2017) discuss further approaches for
facilitating the estimation of MTEs in practice based on imposing
parametric assumptions, like a linear change of the MTE across values of
p(Z, X). A further assumption is additive separability in treatment effect



heterogeneity caused by covariates X on the one hand and unobserved
characteristics on the other hand. This, for instance, implies that any
treatment effect heterogeneity across levels of some covariate like labor
market experience must not interact with the treatment effect heterogeneity
across levels of some unobserved characteristic like ability. This
assumption permits easing the condition in expression (6.14) somewhat by
allowing associations between V (the unobservable affecting the treatment)
and X, so long as X is conditionally independent of any unobserved
characteristics affecting the outcome Y, given V.

In contrast to the discussion so far, let us now assume that it is the
treatment that is multivalued, while maintaining a binary instrument for the
sake of simplicity. Related to section 3.5 in chapter 3, we consider an
ordered treatment D ∈{0, 1, 2, …, J}, where J denotes the number of
nonzero treatment values, while receiving no treatment is coded as zero.
Angrist and Imbens (1995) demonstrate that unfortunately, we cannot
evaluate the effects among complier groups at specific treatment values,
such as for those increasing the treatment from 1 (e.g., 1 week of training)
to 2 (2 weeks of training) when increasing the instrument from 0 to 1.
However, it is possible to obtain a nontrivially mixed (or weighted) average
of effects of unit-level increases in the treatment for nontrivially weighted
complier groups. The latter may differ in terms of how the groups change
their treatment as a reaction to the instrument; for example, complier group
1 might satisfy D(1) = 2, D(0) = 0, while complier group 2 may satisfy D(1)
= 4, D(0) = 1.

Given the IV assumptions in expression (6.1), Angrist and Imbens
(1995) show that if Pr(D(1) ≥ j > D(0)) > 0 for some treatment value j such
that compliers exist at some treatment margin, then the Wald estimand
equals a weighted average of effects of unit changes in the treatment on
various complier groups defined by different margins of the potential
treatments:



with weights , implying that 0 ≤ wj ≤ 1 and .
However, the various treatment effects based on unit changes in the
treatment, E[Y(j) − Y (j − 1)|D(1) ≥ j > D(0)], remain unidentified.
Furthermore, the complier groups contributing to the weighted effect might
be overlapping. Some compliers could satisfy both (D(1) ≥ j > D(0)) and
(D(1) ≥ j + 1 > D(0)) for treatment j (e.g., 1) and therefore be accounted for
multiple times, which arguably compromises the interpretability of the
effect.

For this reason, it may appear tempting to binarize a multivalued
treatment into just two values, such categorizing education into tertiary
versus less than tertiary eduction, and to proceed with the analysis as
outlined in section 6.1 or section 6.2, if controlling for covariates X is
required. However, such a binarization of the treatment generally violates
the IV exclusion restriction; for instance, see the discussion in Andresen
and Huber (2021). The reason is that the instrument also might affect the
treatment at margins not captured by the redefined treatment of tertiary
versus no tertiary eduction, such as at the decision of upper secondary
versus lower secondary education. We note that the result in equation (6.15)
and the related caveats in terms of interpretation also extend to weighted
LATE estimation in setups with multiple instruments and when controlling
for covariates. LATE evaluation is also different under a treatment with
unordered rather than ordered values, which is equivalent to the case of
several unordered treatments that are mutually exclusive (e.g., 1 =IT course,
2 =sales training). Behaghel, Crépon, and Gurgand (2013) consider a
scenario with a three-valued treatment and instrument (D, Z ∈{0, 1, 2}) and
modify the conventional monotonicity assumption in expression (6.1) to
assess the LATEs among the two complier populations (D(1) = 1, D(0) = 0)
and (D(2) = 2, D(0) = 0). Their assumption requires that changing Z from 0
to 1 affects treatment choice 1 versus 0, but not 2, while changing Z from 0
to 2 affects treatment choice 2 versus 0, but not 1. Heckman and Pinto
(2018) suggest an alternative monotonicity assumption, which requires for
any specific value of the unordered treatment that if some subjects move
into (out of) the respective value when the instrument is switched, then no
subjects can at the same time move out of (into) that value. These two
examples demonstrate that monotonicity conditions under multiple



unordered treatments are generally more involved compared to the binary
treatment case. Let us consider a practical illustration of MTE estimation in
R, and to this end load the localIV package by Zhou (2020). The latter
contains an artificially created data set named toydata, which consists of
10,000 observations and includes a binary treatment d, a continuous
instrument z, an outcome y, and a covariate x. As our convention has been
to use capital letters for the various variables, we define D=toydata$d,
Z=toydata$z, Y=toydata$y, and X=toydata$x. We then apply the mte
command to estimate MTEs by LIV estimation using the argument
selection=D ∼ X+Z for specifying the treatment propensity score to be
estimated by means of a probit model, and outcome=Y ∼ X for including
the covariate in the kernel regression–based estimation of equation (6.13).
We store the estimated model parameters in an object named MTE.

In the next step, we run the mte_at command for predicting MTEs at
specific covariate values, by default at the mean of X. The first argument u
corresponds to the values of the normalized unobserved term  or the
treatment propensity score p(Z, V) in equation (6.13) at which the MTEs
should be evaluated, which we set to seq(0.05, 0.95, 0.01) to predict the
effects at  = p(Z, V ) = {0.05, 0.06, …, 0.94, 0.95}. Furthermore, we set
the second argument model=MTE to feed in our estimated model
parameters required for predicting the MTEs. We save the results in an
object named MTEs. Finally, we use the plot command to plot the MTEs
across values of  (or p(Z, V)) given the mean of X, with x=MTEs$u on the
x-axis and y=MTEs$value (i.e., the values of the MTEs) on the y-axis. The
box here provides the R code for each of the steps.



Running the code yields a plot of the MTEs at mean values of X (i.e.,
estimates of  as a function of the probit-based propensity
score estimate , where  denotes the average value of X in the
sample. The plot is provided in figure 6.3. The results suggest that the MTE
is positive for any value of the propensity score (and thus, ), but
decreasing in its magnitude, as indicated by the negative slope of the MTE-
propensity score association. We note that this association could be
estimated for other values of X than its mean as well.

Figure 6.3
MTEs.

6.4 Sample Selection, Dynamic and Multiple Treatments, and Causal
Mechanisms

Related to the discussion in section 4.11 in chapter 4, IV-based treatment
evaluation also can be complicated by nonrandom outcome attrition, such
as nonresponses in follow-up surveys in which the outcome is measured,
and sample selection, when wage outcomes are observed only conditional
on selection into employment. One possibility to tackle this problem is to
impose a missing-at-random (MAR) restriction, as considered in section
4.11, assuming conditional independence of the attrition or sample selection



process and outcome Y given observed variables, such as instrument Z,
treatment D, and covariates X. An alternative to MAR that is tailored to the
LATE framework is the latent ignorability (LI) assumption, suggested in
Frangakis and Rubin (1999). LI requires outcome missingness to be as good
as random, conditional on the compliance type characterizing whether a
subject is a complier, an always taker, or a never taker. Furthermore, we
may combine MAR and LI such that the conditional independence of the
attrition or sample selection process and outcome Y is assumed to hold,
given both observed characteristics and the compliance type; for instance,
see Mealli, Imbens, Ferro, and Biggeri (2004): Y⊥O|Z, D(1), D(0), X,
where O is a binary indicator for observing outcome Y.

However, even under LI (and its combination with MAR), O may only
in a restrictive way be related to unobservables affecting Y (like ability that
might have an influence on the wage outcome) conditional on observed
variables—namely, solely through the compliance type. In contrast,
nonignorable nonresponse or Heckman-type sample selection models allow
more general associations of O and unobservables affecting the outcome
(see Heckman 1976), but generally require a separate instrument for O
(henceforth denoted by Q), which does not affect Y. Even in the latter case,
we can evaluate the LATE only under further assumptions like parametric
restrictions on the outcome model, specific (e.g., monotonicity) conditions
concerning the effect of instrument Q, or both. For instance, Fricke, Frölich,
Huber, and Lechner (2020) consider a continuous instrument Q for
influencing observability O, such as a randomly assigned cash incentive to
participate in a follow-up survey for measuring the outcome of interest, in
addition to the binary instrument Z for treatment D.

Figure 6.4 provides an example satisfying IV validity with two
instruments in such a context, under the assumption that any unobserved
variables omitted from the causal graph do not jointly affect the instruments
Z, Q on the one hand, and the outcome Y or its observability status O on the
other hand. The unobservables U may jointly influence D and Y, where the
dotted lines indicate the nonobservability of U and its effects, thus entailing
treatment endogeneity. Conditional on X, however, Z is a valid instrument
for D and therefore can be used to tackle this endogeneity problem. Yet a
further issue arising in the context of outcome attrition or sample selection
is that we can assess the treatment effect on Y only among observed



outcomes: that is, conditional on O = 1. As both U and Z (via D) affect O,
however, conditioning on O = 1 introduces a statistical association between
U and Z even conditional on X. This association is problematic because U
also affects the outcome Y, such that conditioning on O = 1 makes the
instrument Z endogenous, just like the treatment.

Figure 6.4
Causal paths with two seperate instruments for the treatment and attrition.

This scenario is known as collider bias in statistics (in analogy to the
discussion at the end of section 3.6) and sample selection bias in
economics; for instance, see Pearl (2000) or Heckman (1979). The bias
comes from the fact that if both Z and U affect O even when controlling for
X, then units with observed outcomes but different values in Z (i.e., 1 or 0)
must necessarily have different values in U. If U in turn also affects the
outcome, this implies that observations with Z = 1, O = 1 and Z = 0, O = 1
are not comparable in terms of their potential outcomes conditional on X.
To tackle this second endogeneity problem, instrument Q is used to exploit
exogenous variation in O, which is not associated with U conditional on X.

In analogy to the discussion in section 4.9 in chapter 4, we might be
interested in the impact of several sequentially assigned (i.e., dynamic)
treatments that take place at various points in time, rather than a single
treatment. Let us, for instance, consider the effectiveness of sequences of



active labor market policies like job application training followed by an
information technology (IT) course. We could compare this sequence of
two treatments to nonparticipation in any program or a different sequence
of trainings. Such a dynamic treatment framework generally requires
multiple instruments for each of the treatments and specific multiperiod,
monotonicity conditions (such as, in our example, two periods). For
instance, Miquel (2002) discusses various conditions under which dynamic
LATEs for specific types defined in terms of first- and second-period
compliance, like the compliers in the instrument of either period, can be
assessed in panel data. She also demonstrates that if only a single IV is
available for both treatment periods, then we can under specific
assumptions assess the effects of particular sequences only for individuals
that are always takers or never takers in the first treatment and compliers in
the second one, or vice versa.

In a multiple treatment framework, the various treatments are not
assigned sequentially, but rather at the same point in time. At first glance,
the simultaneous availability of several binary treatments like alternative
active labor market policies constitutes a similar evaluation problem as a
treatment with multiple unordered values, as discussed in section 6.3.
However, one important distinction is that multiple treatments need not be
mutually exclusive, and in fact, we might be interested in the effect of
assigning several treatments at the same time, like the participation in job
application training and an IT course within the same time frame. In
general, this requires distinct instruments for each treatment, as considered
in Blackwell (2015) for the LATE evaluation of separate and joint effects of
two treatments in various subpopulations defined upon compliance with
either of the binary instruments.

As already discussed in section 4.10 on causal mechanisms in chapter 4,
we might also be interested in disentangling the total impact of some
treatment into a direct impact and an indirect effect that operates via an
intermediate variable (or mediator) that also affects the outcome. As an
example, let us consider the health effect of college attendance (D1), which
likely affects the employment state (D2), which in turn may influence the
health outcome. Disentangling the direct effect of D and its indirect effect
operating via employment sheds light on the question whether the health



impact of college attendance is exclusively driven by its effect on labor
market participation or also by other direct channels, such as changes in
health behavior due to a person’s college peers.

To formally define the effects of interest, let D2(d1) denote the potential
state of the mediator as a function of the treatment. Furthermore, we denote
by Y(d1, d2) the potential outcome under specific values of treatment D1 and
mediator D2. We can then express the LATE of the treatment among
compliers as E[Y(1, D2(1)) − Y (0, D2(0))|D1(1) = 1, D1(0) = 0] and break it
into direct and indirect effects, E[Y(1, D2(d1)) − Y (0, D2(d1))|D1(1) = 1,
D1(0) = 0] and E[Y(d1, D2(1)) − Y (d1, D2(0))|D1(1) = 1, D1(0) = 0], in
analogy to the decomposition in section 4.10. Assessing direct and indirect
effects in general requires distinct instruments for the treatment and the
mediator, along with further assumptions; for instance, see Frölich and
Huber (2017). A further option not requiring a second instrument for the
mediator is to invoke an LI-type assumption with respect to D2 (namely,
Y(d1, d2)⊥D2(d1′)|Z, D1(1), D1(0), X, for d1, d1′∈{0, 1}), as considered in
Yamamoto (2013). A more comprehensive survey on further extensions of
IV-based LATE evaluation is provided in Huber and Wüthrich (2019).



7
Difference-in-Differences

7.1 Difference-in-Differences without Covariates

In the presence of treatment endogeneity (even when controlling for
observed covariates), an alternative strategy to using instruments, which
might be hard to find in many empirical contexts, is the difference-in-
differences (DiD) approach, which goes back to Snow (1855) and was more
recently applied in Ashenfelter (1978). The DiD method bases treatment
evaluation on the common trend assumption. The latter says that in the
absence of the treatment, the average outcomes of the actually treated and
nontreated subjects would experience the same change over time (i.e., a
common trend) when comparing the outcomes across periods before and
after the treatment. Put differently, the mean potential outcomes under
nontreatment of treated and nontreated subjects follow a common trend. It
is worth noting that assuming that both treatment groups would experience
the same time trend in the average outcomes in the absence of the treatment
nevertheless permits for differences in the average levels of potential
outcomes across treatment groups rooted in treatment selection bias.

As an example, let us consider the employment effect of a minimum
wage (treatment D), which is introduced in one geographic region, but not
in another one, as discussed in Card and Krueger (1994). While the
employment level (outcome Y) may differ in both regions due to differences
in the industry structure, DiD-based evaluation requires that average



changes in employment due to business cycles would be the same in both
regions in the absence of a minimum wage. In this setup, a comparison of
average employment in the posttreatment period across regions does not
give the effect of the minimum wage due to treatment selection bias related
to the industry structure. Furthermore, a before-and-after comparison of
employment (i.e., before and after treatment introduction) within the treated
region is biased, too, as it picks up both the treatment effect and the
business cycle–related time trend.

Under the common trend assumption, however, the time trend in the
average employment without treatment for either region is given by the
before-and-after comparison in the nontreated region. Subtracting the
before-and-after difference in employment in the nontreated region (time
trend) from the before-and-after difference in the treated region (treatment
effect plus time trend), therefore, gives the average treatment effect in the
treated region (ATET). That is, taking the difference in the before-and-after
differences across regions yields a causal effect under the common trend
assumption. We may apply this estimation approach to both panel data,
where the very same subjects are observed before and after treatment, or to
repeated cross sections, where subjects differ across periods.

To formalize the common trend assumption, let us introduce a time index
T, which is equal to zero in the pretreatment period, when neither group has
received the treatment (yet), and one in the posttreatment period, after
introducing the treatment in the treated group (but not the nontreated
group). To distinguish observed outcomes in terms of pretreatment and
posttreatment periods, we add the subscript t ∈{0, 1}, such that Y0 and Y1

correspond to the pretreatment and posttreatment outcomes, respectively.
Likewise, we add the time subscripts to the potential outcomes in the
various periods, such that Y0(1), Y0(0) and Y1(1), Y1(0) correspond to the
pretreatment and posttreatment potential outcomes, respectively. Using this
notation, the common trend assumption corresponds to

that is, the trend in the mean potential outcomes under nontreatment is the
same across the treatment groups.



Furthermore, let us also impose a no anticipation assumption, which
implies that subjects not yet treated in the pretreatment period do not
anticipate their treatment in a way that already influences their pretreatment
outcomes. Put differently, the treatment yet to be realized (e.g., a training
program in 2021) cannot induce behavioral changes in the treated group
that affect pretreatment outcomes (e.g., employment in 2020) as a reaction
to the expectation of the treatment. More formally, this implies that the
average treatment effect on the treated (ATET) in the pretreatment period T
= 0 is equal to zero:

Our causal effect of interest is the ATET after treatment introduction;
that is, in the posttreatment period: ΔD=1 = E[Y1(1) − Y1(0)|D = 1]. To show
how the latter can be evaluated based on our assumptions, we first note that
E[Y1|D = 0] − E[Y0|D = 0] = E[Y1(0) − Y0(0)|D = 0] (because Yt = Yt(0) if D =
0), such that by the common trend assumption in equation (7.1), it follows
that

Therefore, we can assess the ATET based on the difference in before-and-
after differences of average outcomes across treated and nontreated groups,
as demonstrated here:

The second equality in equation (7.4) follows from subtracting and
adding E[Y0(0)|D = 1], and the third comes from the no anticipation
assumption in equation (7.2), implying that E[Y0(0)|D = 1] = E[Y0(1)|D = 1].
The fourth equality follows from the fact that Yt = Yt(1) for t ∈{0, 1}



conditional on D = 1, and the fifth comes from equation (7.3). This implies
that the ATET is nonparametrically identified based on the regression of the
outcome on a constant, a dummy variable for the treatment group, a dummy
for the posttreatment period, and an interaction of the latter two variables,
as follows:

where α = E[Y0|D = 0] corresponds to the mean outcome of the nontreated
in the pretreatment period and βD = E[Y0|D = 1] − E[Y0|D = 0] to the mean
difference in outcomes across treatment groups in the pretreatment period.
Here, βT = E[Y1|D = 0] − E[Y0|D = 0] gives the presumably common time
trend in mean outcomes among the nontreated, and βD, T = E[Y1|D = 1] −
E[Y0|D = 1] −{E[Y1|D = 0] − E[Y0|D = 0]} = ΔD=1 the ATET.

Figure 7.1 provides a graphical illustration of regression equation (7.5),
with the conditional mean outcome E[YT|D] depicted on the y-axis and time
period T on the x-axis. While βD provides the difference in the mean
outcomes of the treated and nontreated groups in the pretreatment period T
= 0, βT corresponds to the change in the mean outcome over time among the
nontreated. The dashed line provides the hypothetical evolution of the mean
outcome for the treated group if the treatment had not been introduced
(between T = 0 and T = 1), given that the common trend assumption holds.
Under this condition, the difference between the observed change in the
mean outcome among the treated over time and the hypothetical evolution
under nontreatment corresponds to the ATET, given by βD, T.



Figure 7.1
DiD regression.

It is worth noting that there is a second interpretation of the common
trend assumption in equation (7.1), namely a statistically equivalent bias
stability assumption. To see this, let us rearrange equation (7.1) in the
following way:

This assumption implies that the difference in mean potential outcomes
under nontreatment across treatment groups (i.e., the bias in the average of
Yt(0) across treated and nontreated subjects due to differences in
counfounders jointly affecting the treatment and the outcomes) is constant
over time. For this reason, DiD can also be interpreted as taking mean
differences across treated and nontreated outcomes in the posttreatment and
pretreatment periods, respectively, and subtracting the difference in the
pretreatment period, which gives the bias across treatment groups, from the
difference in the posttreatment period. To see this formally, we note that we
can rearrange equation (7.4) to



Concerning statistical inference, such as the computation of p-values and
confidence intervals for the ATET, a practical issue is that the subjects
entering DiD-based estimation are typically not independently sampled
from each other, as is conventionally assumed. In panel data, for instance,
the very same units are observed prior and after the treatment, such that
there is most likely a correlation of certain background characteristics (like
personality traits) within subjects over time. Even in repeated cross sections
with different subjects in each period, such correlations may occur, perhaps
because individuals living in regions receiving or not receiving the
treatment (like a change in the minimum wage) are exposed to the same
institutional context of the respective region. For instance, if a treatment is
introduced on the state level, such as by a federal state, then all individuals
living in that state share the same regional legislation and institutions,
which may entail a correlation in unobserved characteristics. For this
reason, cluster-robust methods for estimating the standard error of the
ATET should be considered for DiD estimation.

For panel data, cluster methods take into account that the same subjects
are repeatedly sampled across time by considering multiple observations of
the same subject as belonging to the same cluster. One approach is to use a
cluster-corrected version of the asymptotic approximation for the standard
error, such as in equation (3.40) of section 3.4; another is to use a modified
version of the bootstrap introduced in expression (3.48), a cluster- or block-
bootstrap. The latter consists of randomly drawing entire clusters along with
all cluster-related observations from the data, rather than single
observations. In a data set with repeated cross sections in which the
treatment varies across regions, this amounts to randomly sampling entire
regions with all its observed individuals. In panel data, the cluster bootstrap
draws individuals and their observations in both the pretreatment and
posttreatment periods. We, however, need to be aware that cluster-robust
inference might perform satisfactorily only if sufficiently many treated and
nontreated clusters (e.g., regions) are available in the data. Otherwise, we
should consider more sophisticated inference methods tailored to setups
with few clusters; for instance, see the discussions of DiD-related inference



issues by Bertrand, Duflo, and Mullainathan (2004); Donald and Lang
(2007); Cameron, Gelbach, and Miller (2008); Conley and Taber (2011);
and Ferman and Pinto (2019).

DiD approaches are frequently applied to monotonically transformed
outcomes, such as the logarithm of Y instead of the level of Y, which
permits interpreting the treatment effect (approximately) in terms of
percentage changes of the outcome. For instance, considering the logarithm
of wages permits assessing by how many percent the wages among the
treated change on average due to the introduction of the treatment. As a
word of caution, however, it needs to be pointed out that if the common
trend assumption holds with regard to Y, it generally does not hold for some
transformation of Y, and vice versa. Except in special cases discussed by
Roth and Sant’Anna (2021) (including a randomly assigned treatment D),
the common trend assumption will depend on the functional form of the
outcome, and thus for example may not hold for Y, but instead for the
logarithm of Y or some other transformation.

In practice, the plausibility of the common trend assumption might be
scrutinized if several pretreatment periods are available, by running placebo
tests. To this end, we apply the DiD approach in a time span prior to
treatment by considering an earlier pretreatment period as T = 0 and a later,
but still pretreatment, episode as a pseudotreatment period T = 1. As the
treatment has not yet been implemented in any of these periods, a
statistically significant pseudotreatment effect points to a violation of the
common trend (or bias stability) assumption. If the common trend
assumption does not hold exactly, we may account for such violations in
DiD-based causal inference by imposing restrictions on the possible
differences in trends between the treated and nontreated groups, as
discussed by Rambachan and Roth (2020). One restriction, for instance,
could be that the observed pretreatment differences in trends across
treatment groups are informative about the magnitude of the posttreatment
differences in trends of mean potential outcome under nontreatment across
treatment groups.

As already discussed in chapter 6 on instrumental variable (IV) methods,
compliance with the treatment assignment might not be perfect, such that
the actual treatment participation might differ from the assignment. For
instance, if a government launches an educational program giving access to



better education in some regions of a country, not necessarily all pupils in
these treated regions are affected by the program. In such a fuzzy DiD case
with treatment noncompliance, the conventional DiD approach only
provides an intention-to-treat (ITT) effect of the treatment assignment (e.g.,
increasing accessibility to education) rather than the effect of treatment
participation (e.g., actually receiving education).

We could therefore be tempted to apply an IV-based DiD approach, such
as by running two regressions based on equation (7.4), with D
corresponding to the treatment assignment and Y corresponding to treatment
participation in the first regression and the actual outcome variable in the
second regression, respectively. Inspired by the discussion in section 6.1,
scaling (or dividing) the βD, T coefficient from the second regression by the
βD, T coefficient from the first regression supposedly yields a local average
treatment effect (LATE) among compliers: that is, those switching the
treatment status from the pretreatment to the posttreatment period due to the
assignment. As discussed by de Chaisemartin and D’Haultfeuille (2018),
however, such an approach yields the LATE only if additional assumptions
are satisfied: The share of noncomplying treated units in the group not
assigned to the treatment must not change over time and the ATE among
units treated in both periods (always takers) must be stable over time. For
the case that the latter (and, in the context of time-varying treatment effects,
often implausible) assumption is not satisfied, de Chaisemartin and
D’Haultfeuille (2018) suggest a time-corrected IV approach that relies on a
specific common trend assumption within subgroups of subjects sharing the
same treatment in the pretreatment period.

The DiD approach can also be applied in the context of mediation
analysis as discussed in section 4.10 in chapter 4. Deuchert, Huber, and
Schelker (2019), for instance, assume a randomized treatment and tackle
mediator endogeneity by assuming monotonicity of the binary mediator in
the treatment (similar to the monotonicity assumptions in chapter 6), along
with particular common trend assumptions. The latter imply that mean
potential outcomes under specific treatment and mediator states share a
common trend across specific subpopulations (or compliance types) that are
defined in terms of how the mediator reacts to the treatment.



A further, practically relevant scenario concerns the assessment of a
multivalued (rather than a binary) treatment; see the discussion in section
3.5 in chapter 3. In this case, applying the DiD approach to a pairwise
comparison of a specific nonzero treatment value (e.g., D = 3) versus no
treatment (D = 0) yields the ATET of that respective nonzero treatment,
given that the common trend assumption holds for this specific treatment
comparison. Therefore, imposing the common trend assumption with regard
to all nonzero values of the treatment (D = 1, 2, …) in principle permits
assessing the ATET of each treatment value, such as various educational
programs. This also applies to continuously distributed treatments; for
example, see Callaway, Goodman-Bacon, and Sant’Anna (2021). As a
caveat, however, such a strategy does not allow for comparing two nonzero
treatments (e.g., D = 2 versus D = 1) to assess their effectiveness relative to
each other. This is because the common trend assumption in equation (7.1)
refers to the potential outcome under nontreatment only and makes no
claims about outcome trends for nonzero treatments.

For this reason, assessing one versus another nonzero treatment requires
further assumptions, such as that the average effect of at least one of the
nonzero treatments (e.g., D = 2) versus no treatment (D = 0) is
homogeneous across the two treatment groups considered (e.g., groups with
D = 2 and D = 1), as discussed by Fricke (2017). This implies that
numerous empirical DiD applications assessing multivalued, and even
continuously distributed, treatments implicitly impose such a strong effect
homogeneity assumption, in addition to the conventional common trend
assumption. In the absence of effect homogeneity, the conventional DiD
approach applied to nonzero treatments may still yield a lower bound on the
absolute causal effect, such as of D = 2 versus D = 1. This is the case if an
alternative (and possibly more plausible) assumption on the order of
treatment effects holds—namely, that the effect of a higher treatment dose
compared to no treatment (e.g., D = 2 versus D = 0) weakly dominates that
of a lower treatment dose (D = 1 versus D = 0) in absolute terms.

To apply DiD estimation in R, we load the wooldridge package by Shea
(2021), which contains a data set on house prices in North Andover,
Massachusetts, prior to and after the construction of a garbage incinerator.
We also load the multiwayvcov package by Graham, Arai, and Hagströmer
(2016) and the lmtest package for computing cluster-robust standard errors.



We use the data and attach commands to load the kielmc data originally
analyzed by Kiel and McClain (1995) and store its variables in own R
objects. We define the outcome Y=rprice to be the real price of houses
measured in 1978 US dollars (USD) and the treatment D=nearinc to be a
binary indicator of whether a house is situated close to (D = 1) or farther
away from (D = 0) the incinerator. Furthermore, we define the period
dummy T=y81, which is 1 for house prices observed in 1981, after the
construction of the incinerator, and 0 for those observed in 1978, prior to its
construction.

In the next step, we generate an interaction term between the treatment
and the time indicator, interact=D*T, and run a linear regression to estimate
equation (7.5) using the lm command, storing the output in an object named
did. We feed the latter into the cluster.vcov command for computing cluster-
robust standard errors and specify the argument cluster=cbd, thus using cbd
(distance to the center, which is coded discretely in categories) as the cluster
variable. We save the results in an object named vcovCL and finally run
coeftest(did, vcov=vcovCL) to inspect the regression results with cluster-
robust standard errors. The box here provides the R code for each of the
steps.

Running the code yields the following output:



The coefficient on the interaction term in our DiD regression suggests
that the construction of the garbage incinerator reduces the house price in
the treatment group (i.e., among houses situated close to the incinerator) on
average by 11,863.90 USD. The ATET estimate is statistically significant at
the 10 percent level, but not at the 5 percent level when considering cluster-
robust standard errors because the p-value amounts to 0.074 (or 7.4
percent).

7.2 Difference-in-Differences with Covariates

In many empirical problems, the common trend assumption, as considered
in the previous section, might be debatable and appear plausible only after
controlling for observed covariates X. When assessing the treatment effect
of a policy change like access to unemployment benefits or training
programs on labor market outcomes, for instance, it could be argued that the
common trend assumption across treated and nontreated observations is
credible only for treated and nontreated units within the same occupation or
industry. This is because outcomes like employment or wages might in
general develop differently across distinct occupations or industries, which
poses a problem for ATET evaluation if treated and nontreated observations
differ with regard to these characteristics. For this reason, we will
henceforth assume that the DiD assumptions only hold conditional on X.
This scenario is considered in Lechner (2011), who shows that the
following conditions identify the ATET among the treated observations in
the posttreatment period, denoted by ΔD=1, T=1 = E[Y1(1) − Y1(0)|D = 1, T =
1]:



The first expression in the first line of expression (7.8) formalizes the
conditional common trend assumption stating that given X, no
unobservables jointly affect the treatment and the trend of mean potential
outcomes under nontreatment. This is a selection-on-observables
assumption on D, however, with regard to the changes in mean potential
outcomes over time, rather than the levels of the outcomes as in equation
(4.1) in chapter 4. The two types of selection-on-observables assumptions
are not nested, in the sense that neither implies the other. Furthermore, they
cannot be fruitfully combined to obtain a more flexible treatment effect
model either; see the discussion by Chabé-Ferret (2017).

The second condition in the first line of expression (7.8) imposes that X
is not affected by D. In the context of DiD, this assumption deserves
particular scrutiny. The reason for this is that in many empirical
applications, the covariates are measured in the same period as the
(pretreatment or posttreatment) outcome, implying that for T = 1, X is
measured after the introduction of the treatment. Analogous to the issues
discussed in section 3.6, this jeopardizes the evaluation of the ATET if D
affects X and X affects Y, is associated with unobservables affecting Y, or
both. If X includes occupation, for instance, then the choice of a specific
occupation in period T = 1 could be the result of the treatment of interest,
such as a specific training program. To circumvent such issues, we might
alternatively consider the covariate values in T = 0 as well when controlling
for X in the posttreatment period T = 1. However, even this approach might
not be fully appropriate because it does not allow controlling for time trends
in X that differ across treatment groups between T = 0 and T = 1 (even when
not affected by the treatment itself) and may thus entail a violation of the
common trend assumption. As a pragmatic approach, therefore, we could
consider both possibilities of covariate measurement (i.e., in the respective
outcome period versus in the pretreatment period only) and check the
robustness of the DiD results across both approaches. Furthermore,
Caetano, Callaway, Payne, and Rodrigues (2022) discuss alternative
evaluation strategies for time-varying covariates depending on whether the
latter are influenced by the treatment.

A further potential problem that concerns time-varying covariates, no
matter whether they are measured in pretreatment or posttreatment periods,
is called mean reversion. The latter phenomenon implies that a time-



varying covariate that takes a rather extreme value at a specific point in
time (e.g., particularly bad health measured in a specific year), tends to
move toward its mean value across all periods (e.g., average health) at
subsequent points in time. As discussed in Daw and Hatfield (2018), for
instance, controlling for such extreme values in X in one period along with
mean reversion in subsequent periods can generate a nonnegligible bias in
DiD estimation, such that the use of time-varying covariates is to be
scrutinized.

In analogy to expression (7.2), the second line in expression (7.8) rules
out average anticipation effects among the treated conditional on X,
implying that D must not causally influence pretreatment outcomes in
expectation of the treatment to come. The third line imposes common
support. For any value of X appearing in the treated group in the
posttreatment period with (D = 1, T = 1), subjects with such values of X
must also exist in the remaining three groups with (D = 1, T = 0), (D = 0, T
= 1), and (D = 0, T = 0).

Under the assumptions in expression (7.8), it holds that E[Y1|D = 0, X]
−E[Y0|D = 0, X] = E[Y1(0)−Y0(0)|D = 0, X] = E[Y1(0)−Y0(0)|D = 1, X]. In
analogy to the identification result without covariates in equation (7.4), the
conditional ATET given X corresponds to

Therefore, averaging the conditional ATET in equation (7.9) over the
distribution of X among the treated in the posttreatment period yields the
ATET in that period:

where we use the shorthand notation μd(t, x) = E[Yt|D = d, X = x] for the
conditional mean outcome given the treatment, the time period, and the
covariates.

An alternative and in terms of identification equivalent approach is
inverse probability weighting (IPW):



where Π = Pr(D = 1, T = 1) denotes the unconditional probability of being
treated and observed in the posttreatment period. Here, ρd, t(X) = Pr(D = d, T
= t|X) are the conditional probabilities (or propensity scores) of specific
treatment group–period-combinations D = d, T = t, given X.

Combining the regression approach with IPW yields a doubly robust
(DR) expression for DiD-based ATET evaluation; see Zimmert (2020):

Depending on whether we construct estimators as sample analogs of
equations (7.10), (7.11), or (7.12), -consistent estimation may be based
on regression or matching, on IPW, or on DR estimation, respectively.
Furthermore, for estimating the DR expression (7.12), we can apply double
machine learning (DML) to control for covariates X in a data-driven way in
analogy to the methods outlined in section 5.2 in chapter 5.

It is worth noting that many DiD studies at least implicitly make an
additional assumption to those in expression (7.8)—namely, that the joint
distribution of treatment D and covariates X remains constant over time T,
formalized by (X, D)⊥T; for instance, see the discussion by Hong (2013).
This, for instance, rules out that the composition of X changes across
periods within either treatment group. Under this additional assumption,
ΔD=1, T=1, the causal effect in the posttreatment period among the treated in
the posttreatment period coincides with the ATET ΔD=1, the effect in the
posttreatment period among all the treated in both the pretreatment and
posttreatment periods (thus, including not yet treated subjects). Then, ΔD=1

corresponds to the following expressions:



where p(X) = Pr(D = 1|X) is the treatment propensity score given X, P =
Pr(D = 1) is the unconditional treatment probability, and Λ = Pr(T = 1) the
unconditional probability of being in the posttreatment period. By
exploiting the identification results after the first, second, and third
equalities in equation (7.13), we can base -consistent ATET estimation
on regression or matching, on IPW as considered in Abadie (2005), on DR
estimation as in Sant’Anna and Zhao (2018), or on DML, as in Chang
(2020).

A further estimation approach is based on linearly including covariates X
in regression equation (7.5) to control for differences in observed
characteristics across treatment groups, time, or both:

where K denotes the number of covariates. However, it is important to
notice that estimating the ATET based on equation (7.14) imposes rather
strong parametric assumptions, in particular that the treatment effect is
homogeneous across different values of X and the outcome is linear in X. In
contrast, such assumptions can be avoided in the previously outlined
methods.

As an illustration in R, let us reconsider the kielmc data set analyzed at
the end of section 7.1 with the same definitions of treatment D, outcome Y,
and periods T as before, but now also control for covariates when running
the DiD estimation. To this end, we load the causalweight package, which
contains an IPW-based DiD procedure. We define the covariates X to
include the variables area (square footage of the house), rooms (number of
rooms), and baths (number of bathrooms) using the cbind command. We
then set a seed for the reproducability of the results and feed Y, D, T, and X
into the didweight command for the estimation of the average effect among
the treated in the posttreatment period, ΔD=1, T=1, based on the IPW



expression in equation (7.11). We also set the arguments boot=399 and
cluster=cbd to run a cluster bootstrap with 399 bootstrap samples for
estimating the standard error of the ATET, where cbd serves as the cluster
variable as in section 7.1. We store the results in an object named out and
call out$effect, out$se, and out$pvalue to investigate the ATET estimate, its
standard error, and the p-value. The box here provides the R code for each
of the steps.

Running the code yields an ATET of − 14, 590.25 USD on the prices of
houses close to the incinerator in the posttreatment period. However, this
nonnegligible negative effect is not statistically significant at the 10 percent
level due to a rather sizeable cluster-robust standard error of 11,315.72
USD, which entails a p-value of 0.197 (or 19.7 percent).

7.3 Multiple Periods of Treatment Introduction

In many empirical problems, there is not only one treatment group exposed
to the introduction of a treatment at one specific point in time, but there are
multiple groups that experience the introduction at different points in time.
For instance, a smoking ban in restaurants and public places might be
introduced in a subset of countries, states, or regions and then in others one
or several years later. For this reason, we modify our notation to adapt the
previously considered DiD framework to multiple periods and treatment
groups, such as discussed in Abraham and Sun (2018), Borusyak and
Jaravel (2018), Callaway and Sant’Anna (2021), Goodman-Bacon (2018),
and de Chaisemartin and D’Haultfeuille (2020). Let T now denote multiple
periods such that T ∈{0, 1, …, �}, with � corresponding to the last period.
While nobody is treated in period T = 0, the treatment is introduced in a
staggered way in later periods such that some subjects might receive the
treatment in T = 1, others in T = 2, and so on. There may even be subjects



who are never treated, making this group inherently nontreated in any time
period. Furthermore, let Gt be a dummy variable that is equal to 1 if a
subject experiences treatment introduction in period T = t. For instance, G2

= 1 implies that the treatment is introduced in period 2 for this group (e.g.,
the residents of a particular state), while G2 = 0 implies a different period of
treatment introduction.

With multiple periods, in principle, we can assess the ATET in or across
various outcome periods rather than just one. For instance, we may define
treatment group– and time-specific ATETs as the average effect in a
specific outcome period (say t′), among those subjects for whom the
treatment is introduced at the beginning of a specific period (say t):

The outcome period t′ in which we assess the ATET may correspond to the
same or a later point in time than t, the period at the beginning of which the
treatment was introduced to a specific group. This permits investigating the
evolution of the treatment effect over several follow-up periods in order to
distinguish its short- and longer-term impact.

For assessing ΔGt=1, T=t′, the DiD assumptions in expression (7.8) must
hold when considering subjects satisfying Gt = 1 as the treated group and
subjects not treated up to (and including) time period t′ as the nontreated
group. The latter may consist of subjects that are never treated in any
period, such that G0 = G1 = ⋯ = G� = 0; or of subjects experiencing
treatment introduction at a later point in time, such that Gt′′ = 1 for some t′′
> t′; or of both types of subjects (if they exist in the data). Importantly, the
common trend assumption must be plausibly satisfied in light of the
selected treated and nontreated population, as well as the outcome period.
When considering the never treated subjects as the nontreated group, for
example, then E[Yt′(0) −Y0(0)|Gt = 1, X] = E[Yt′(0) −Y0(0)|G0 = G1 = ⋯ = G�

= 0, X] must be satisfied. It follows that equations (7.10), (7.11), or (7.12)
for time-varying covariates X, or equation (7.13) for time-constant
covariates X, yields ΔGt=1, T=t′ when replacing D = 1 with Gt = 1, D = 0 with
G0 = G1 = ⋯ = G� = 0, D with Gt, (1 −D) with (1 −G0 −G1 −…−G�), T = 1
with T = t′, T = 0 with T = t− 1, T with I{T = t′}, and 1 − T with I{T = t − 1}



in all expressions, including the probabilities, propensity scores, and
conditional mean outcomes.

If the DiD assumptions in expression (7.8) plausibly hold for several or
all definitions of treatment periods t and outcome periods t′, we may not
only evaluate the ATETs ΔGt=1, T=t′ in multiple treatment groups and outcome
periods, but also aggregate them as discussed in Callaway and Sant’Anna
(2021). For instance, we might consider the average group-specific ATET
for those satisfying Gt = 1 across all outcome periods t′≥ t, formally defined
as

Computing this causal effect for various treatment groups defined in terms
of Gt permits investigating whether average ATETs across outcome periods
importantly differ across treatment groups (and thus across the timing of the
treatment introduction).

Another arguably interesting question is whether the average effect
across all treated groups varies with the length of treatment exposure. We
may analyze this based on a causal parameter that averages over group-
specific ATETs conditional on a specific time elapsed since treatment
introduction, denoted by e, among the respective treatment groups:

where Pr(Gt = 1|T + e ≤� ) corresponds to the share of those facing
treatment introduction in period t among all treated groups whose outcome
is still observed after e periods in the data window—that is, prior to or in
the final period �. Setting e = 0, for instance, yields the average of group-
specific ATETs in the period of treatment introduction, while setting e = 5
provides the corresponding longer-run effect five periods later among all
treatment groups satisfying t + 5 ≤�, such that their outcomes are still
observed. Varying the elapsed time e thus permits investigating the
dynamics of treatment effects.

In the spirit of equation (7.5) or (7.14), we might be tempted to consider
a linear regression approach for the staggered treatment case based on the



two-way-fixed-effects (TWFE) model. The latter includes dummies for
each treatment group and period, as well as a binary treatment indicator for
whether the treatment has already been introduced for a specific group in
the period considered. We denote this treatment indicator, which is based on
treatment group–time interactions, by � = (G1 · I{T ≥ 1} + G2 · I{T ≥ 2} +
⋯ + G�· I{T = �}), which entails the following TWFE egression model:

In this setup where any groups serve as nontreated observations in periods
prior to their respective treatment introduction and as treated observations
thereafter, βGT, T is interpreted as the ATET. We also note that the terms βX1X1

+ ⋯ + βXKXK may be dropped if the common trend assumption is assumed to
hold without controlling for X; see section 7.1.

Even in this case, however, and somewhat related to the discussion of
equation (7.14), effect heterogeneity poses a threat to ATET evaluation in a
framework with multiple treatment groups and periods. In particular, if the
effects are heterogeneous over time (e.g., if the effectiveness of a marketing
campaign varies with the business cycle), then βGT, T can theoretically take
values that do not correspond to any causal effect, not even a weighted
average across any ΔGt=1, T=t′. As discussed in Goodman-Bacon (2018), the
reason for this is that a TWFE regression weights the group-specific ATETs,
ΔGt=1, T=t′, based on the group size and variance, which may entail a biased
estimate of averaged group-specific ATETs if treatment effects change
across time and treatment groups.

It is worth noting that the staggered treatment design considered so far in
this chapter assumes the treatment to be an absorbing state, in the sense that
any group entering the treatment at some point in time is assumed to remain
in the treatment in its entirety until the end of the data window. However,
there are empirical applications in which subjects might both switch into
and out of the treatment over time, such as union membership. For instance,
de Chaisemartin and D’Haultfeuille (2020) discuss the DiD-based
evaluation of ATETs under nonabsorbing treatment designs and consider
the fuzzy DiD framework with noncompliance in the treatment, in analogy
to the issues raised at the end of section 7.1. Roth, Sant’Anna, Bilinski, and



Poe (2022) provide a more comprehensive survey on further
methodological advancements in DiD estimation, including estimation
under potential violations of the common trend assumption, alternative
approaches to statistical inference, and staggered treatment adoption. The
latter topic is also reviewed in de Chaisemartin and D’Haultfoeuille (2022).

To implement DiD estimation with staggered treatment introduction in
R, we consider the did package by Callaway and Sant’Anna (2020) and an
empirical example provided in that package. Using the data command, we
load the mpdta data previously analyzed by Callaway and Sant’Anna
(2021). The sample contains information on the staggered introduction of a
minimum wage (treatment D) and employment among teenagers (outcome
Y) in 500 US counties from 2004 to 2007. We estimate the treatment group–
time-specific ATETs ΔGt=1, T=t′ defined in equation (7.15) using the att gt
command. The argument yname in the latter defines outcome Y to be
entered in quotation marks, which in our case is the log of teen employment
in a county, as provided in the variable lemp. The argument tname
corresponds to period T, which is provided in the variable year. The
argument gname constructs the treatment group GT based on the period in
which a county is first treated (i.e., introducing a minimum wage), as
indicated in the variable first.treat. The argument xformla permits
controlling for one or several covariates X by including them after the ∼
sign, in our case the logarithm of a county’s population in thousands of
inhabitants provided in the variable lpop, which is measured only once per
county, and thus is time constant.

As we consider a panel data set, we also use the argument idname, which
is the identifier of a specific unit (in our case, the county) across various
periods, as indicated in the variable countyreal. We also use the latter
variable for clustering: that is, for computing cluster-robust standard errors
by using the clustervars argument. We note that if the data were a repeated
cross section rather than a panel, then the argument panel would need to be
set to FALSE rather than the default value, TRUE. Finally, setting the
argument data =mpdta feeds the data set with all the previously mentioned
variables into the DiD procedure. By default, the att gt uses DR estimation
for computing the ATETs, but this might be changed to IPW- or regression-
based approaches. We store the DR estimation results in an object named



out, which we wrap by the summary command. The box here provides the
R code for each of the steps.

Running the code yields the following output:

The column Group indicates in which period the treatment is introduced,
and the column Time in which outcome period the ATET is estimated.
Therefore, the first line, 2004 2004, provides the ATET in 2004 for counties
that introduced the treatment in 2004: that is, ΔG2004=1, T=2004 according to the
definition in equation (7.15). The second line, 2004 2005, provides the
ATET in 2005 for counties that introduced the treatment in 2004, ΔG2004=1,

T=2005. The output also contains simultaneous or uniform 95 percent
confidence intervals, [95 percent Simult. Conf. Band]. The latter
appropriately account for the fact that we simultaneously estimate multiple



treatment group–period-specific ATETs, and therefore test multiple
hypotheses about ATETs at the same time; see also section 4.7 for a
discussion of issues related to multiple hypothesis testing in a different
context. As indicated by a star (*), just two ATETs are statistically
significant at the 5 percent level—namely, those for group G2004 = 1 in 2006
and 2007, where the minimum wage is found to reduce teen employment by
−0.14 and −0.11 log points (or roughly 14 percent and 11 percent),
respectively.

It is also worth noting that whenever the outcome period (Time) is prior
to the first treatment period (Group), the estimates correspond to placebo
tests. For example, we see for treatment group G2006 = 1 that the placebo
tests in outcome periods 2004 and 2005 are close to zero and not
statistically significant, and therefore they do not point to a violation of the
common trend assumption. The output also provides a joint p-value of
pooled placebo tests performed across all pretreatment periods, which
amounts to 0.233 (or 23.3 percent). Therefore, having a zero placebo effect
in pretreatment periods is not rejected at any conventional level of
significance. Finally, the output indicates that those never treated in any
period serve as the nontreated group, which can be modified to consist of
the not-yet-treated observations in a specific period. We may also plot the
group-period-specific ATET estimates along with confidence intervals by
wrapping the estimation output out with the ggdid command, which yields
the graph in figure 7.2.



Figure 7.2
DiD regression with multiple periods.

In the next step, we investigate particular averages over the group-time-
specific ATETs by applying the aggte command to the out object and saving
the results as meanATET. We then wrap the latter by the summary
command.

Running the code yields the following output:



The upper output, Overall ATT, corresponds to the simple average of all
group-period-specific ATETs: that is, across all treatment groups and
outcome periods. The estimate suggests that overall, the minimum wage
reduces employment in treated counties by 0.03 log points (or roughly 3
percent), and this effect is statistically significant at the 5 percent level. The
lower output, Group Effects, provides the ATETs separately for each group
GT, but averaged over all time periods T, thus corresponding to estimates of
equation (7.16) for the various groups. On average (i.e., across all outcome
periods), the introduction of a minimum wage reduces employment in
counties starting with the treatment in 2004 (G2004 = 1) statistically
significantly at the 5 percent level, but not in counties introducing the
treatment in later periods.

7.4 Changes-in-Changes

The Changes-in-Changes (CiC) approach suggested in Athey and Imbens
(2006) is related to DiD, in that it exploits differences in pretreatment and
posttreatment outcomes across treated and nontreated groups, but based on
different assumptions. CiC does not invoke any common trend assumption.
It instead imposes that potential outcomes under nontreatment are strictly
monotonic in unobserved heterogeneity (i.e., an unobserved characteristic
or a function of several unobservables), and the distribution of this
unobserved heterogeneity remains constant over time within treatment
groups. Such a conditional independence between unobserved
heterogeneity and time is satisfied if the subjects’ ranks in the outcome
distributions within treatment groups (e.g., the rank among wages in



counties introducing a minimum wage) do not systematically change from
pretreatment to posttreatment periods. This corresponds to rank similarity
within treatment groups across time, rather than across treatment groups as
considered in the IV context as discussed at the end of section 6.2 in chapter
6. In contrast to DiD, CiC allows for identifying both the ATET and
quantile treatment effect among the treated (QTET), but (again in contrast
to DiD) it generally requires a continuously distributed outcome. Similar to
DiD, the CiC approach can be applied to both panel data and repeated cross
sections.

For a more formal discussion, let us consider the following assumptions
underlying the CiC approach:

where U is either a single (i.e., scalar) unobservable (like unobserved
ability) or an index or function of unobservables, and ℋ(u, t) is a general
function that is assumed to be strictly monotonically increasing in the value
of u of unobservable U for period t being either 0 or 1. The model
assumptions on ℋ imply that the potential outcome under nontreatment is
the same for all subjects with the same unobserved heterogeneity U in a
specific time period, independent of the actual treatment group, and a
higher U entails a higher potential outcome. A special case satisfying these
conditions is the assumption of a linear model for the potential outcome
under nontreatment, YT(0) = βTT + U, with βT denoting the time trend under
nontreatment. The conditional independence assumption U⊥T|D in
expression (7.19) requires that the distribution of unobserved heterogeneity
is constant over time within treatment groups, while it might vary across
treatment groups.

Let us introduce some further notation to discuss the identification of
QTEs and ATEs. We denote by FY(d)|dt(y) = Pr(Y (d) ≤ y|D = d, T = t) and
Fdt(y) = Pr(Y≤ y|D = d, T = t) the conditional cumulative distribution
functions of the potential outcome Y(d) (with d being either 0 or 1) and the
observed outcome Y, given D = d and T = t, respectively. We also note that
the inverse of the conditional distribution function (namely, ),
corresponds to the conditional quantile function, in analogy to the
discussion in section 4.8. Athey and Imbens (2006) demonstrate that under



the assumptions in equation (7.19), we can identify the potential outcome
distribution under nontreatment in the posttreatment period among those
who actually receive the treatment, based on the observed conditional
outcome distributions F01, F00, and F10:

This in turn permits identifying the QTET at rank τ ∈(0, 1), such as τ =
0.5 for the effect at the median. We denote the QTET by 

, which corresponds to the following
equation that is based on nested quantile and distribution functions:

Furthermore, we obtain the ATET by

where Y10 denotes the observed outcome in the group with D = 1 and T = 0.
Intuitively, averaging the QTETs over all ranks in the treated population
yields the ATET. We note that in addition to the assumptions in expression
(7.19), the evaluation of the ATET relies on the common support restriction
that the distribution of the unobservable U among the nontreated contains
all values of U that exist among the treated. If the latter assumption is
violated, such that some values of U among the treated do not occur among
the nontreated, then QTETs can be assessed only at those ranks τ that satisfy
common support in U across treatment groups.

Figure 7.3 provides a graphical illustration of the key property that 
 identifies the unobserved counterfactual outcome .

At a quantile τ where the QTET is to be evaluated, we can directly observe 
 in the distribution of Y among the treated (D = 1) in the

posttreatment period (T = 1). Next, we travel back in time to find :
that is, the corresponding quantile among the treated (D = 1) in the
pretreatment period (T = 0). This is the representative outcome prior to
treatment of a treated observation at rank τ in the posttreatment period due
to the conditional independence U⊥T|D. In the next step, we assess the



rank of this outcome taken from the not-yet-treated in the outcome
distribution of the nontreated (D = 0) in the same pretreatment period (T =
0), yielding τ′. Formally, .

Figure 7.3
CiC.

We note that despite looking at pretreatment outcomes for which the
treatment effect is zero in either treatment group, the rank of a specific
outcome value (e.g., a monthly gross wage of 5,000 USD) among the
nontreated, τ′, generally differs from the rank among the treated, τ, because
the treated and nontreated groups may differ in terms of U. The CiC
approach therefore allows us to match treated observations to comparable
nontreated observations despite different distributions of unobservables.
Finally, using U⊥T|D again, we travel forward in time to find the
corresponding quantile under nontreatment (D = 0) in the posttreatment
period (T = 1) at rank τ′—namely, . The latter
corresponds to the counterfactual outcome that a treated subject in the



posttreatment period at rank τ in the treated outcome distribution would
have expectedly obtained in the absence of treatment.

While we have so far focused on the binary treatment case, the CiC
framework can also be adapted to the evaluation of a multivalued, or even
continuously distributed, treatment; see the discussion in D’Haultfoeuille,
Hoderlein, and Sasaki (2021). In this case, the assumptions invoked in
expression (7.19) have to be imposed with regard to the potential outcomes
under various treatment levels rather than under nontreatment alone.
Furthermore, de Chaisemartin and D’Haultfeuille (2018) extend the CiC
approach to the evaluation of the LATE in scenarios with noncompliance of
treatment participation with regard to treatment assignment, as discussed at
the end of section 7.1 in the DiD context. Furthermore, combining random
treatment assignment with CiC assumptions on intermediate variables like
the actual treatment participation or some mediator permits assessing causal
mechanisms as considered in section 4.10 or testing IV exclusion
restrictions; for instance, see the discussions by Huber, Schelker, and
Strittmatter (2020) and Sawada (2019). Finally, another important extension
is QTET and ATET evaluation under the assumption that the CiC
conditions hold only when controlling for observed covariates X, as
considered by Melly and Santangelo (2015).

To apply CiC estimation in R, we load the qte package by Callaway
(2019), which contains an estimator of the QTET, as well as the kielmc data
in the wooldridge package already analyzed at the end of sections 7.1 and
7.2. We apply the CiC command using the regression formula rprice ∼
nearinc, which specifies the real house price as the outcome and the binary
indicator for being close to the garbage incinerator as the treatment.
Furthermore, we define the arguments t=1981 (i.e., the posttreatment period
(year 1981)), and tmin1=1978 (i.e., the pretreatment period (year 1978)),
followed by the argument tname=“year”, which specifies the variable
measuring the period to be year. We also specify the data to be analyzed
using data=kielmc. By default, the CiC command estimates the QTETs for
ranks τ ∈{0.05, 0.10, …, 0.90, 0.95}, which corresponds to setting
probs=seq(0.05,0.95,0.05) but could be changed to different ranks. Finally,
we store the output in an R object named cic, which we wrap with the ggqte
command to plot the results. The box here contains the R code for each
step.



Running the code yields the plot provided in figure 7.4, which plots the
QTEs on the y-axis across various outcome ranks on the x-axis. We find
none of our QTET estimates, which correspond to the black dots, to be
statistically significantly different from zero at the 5 percent level, as the 95
percent confidence intervals given by the dashed lines always include the
zero.

Figure 7.4
CiC-based QTEs across ranks.



8
Synthetic Controls

8.1 Estimation and Inference with a Single Treated Unit

Like the difference-in-differences (DiD) and Changes-in-Changes (CiC)
approaches discussed in chapter 7, the synthetic control method permits
evaluating causal effects if the outcome variable is observed in both
pretreatment and posttreatment periods. In contrast to the previous
approaches, however, it necessarily requires panel data, implying that the
same subjects or units can be followed over time. The synthetic control
method was originally developed for case study setups, with the goal to
assess the treatment effect on a single treated unit based on a comparison
with multiple nontreated units. This appears particularly well suited for the
evaluation of relatively rare (or even unique) policy interventions that affect
only one specific region, country, organization, or company.

For instance, Abadie, Diamond, and Hainmueller (2015) apply the
synthetic control method to evaluate the effect of the reunification of West
and East Germany in 1990 on the development of the gross domestic
product (GDP) per capita in West Germany. While the economic outcome
under the reunification can be directly observed for West Germany in the
data, the identification of the reunification’s effect requires inferring the
counterfactual outcome of how the West German GDP per capita would
have evolved in the absence of the reunification. The idea of the synthetic
control method is to impute the counterfactual outcome under nontreatment



based on an appropriate combination of other countries that are sufficiently
similar in economic terms to West Germany prior to the reunification, but
did not experience any reunification or similar kind of policy change. More
concisely, the treated unit’s potential outcome under nontreatment (i.e., the
West German counterfactual after the reunification) is synthetically
estimated as a weighted average of the observed posttreatment outcomes
coming from a donor pool of nontreated units, in this case other
Organisation for Economic Co-operation and Development (OECD)
countries. The weight that a nontreated country receives for computing this
average called the synthetic control depends on how similar the country was
to West Germany in terms of economic conditions in the pretreatment
periods: that is, prior to reunification.

A second example can be found in the seminal synthetic control study of
Abadie and Gardeazabal (2003), who consider the effect of the terrorist
conflict in the Basque Country, a region in Spain, on GDP per capita in that
region based on a synthetic control created from other Spanish regions.
Figure 8.1 provides a graphical illustration of the application of the
synthetic control method in this context, which has been created using the
Synth package by Abadie, Diamond, and Hainmueller (2011) for the
statistical software R. The start of the treatment is marked by 1968, when
the terrorist group ETA claimed its first victim. While the solid line
provides the development of GDP per capita (in thousands of US dollars as
of 1986) for the Basque Country from 1957 to 1997, the dashed line
corresponds to the respective development of its synthetic control. The
latter is obtained as a weighted average of other Spanish regions, such that
the GDP development in these places closely matches that of the Basque
Country in the pretreatment periods from 1957 to 1967. After the start of
the terrorist conflict in 1968, the GDP per capita of the Basque Country and
its synthetic control diverge more and more, pointing to a negative
treatment effect, particularly after the mid-1970s, when ETA’s terrorist
activities intensified.



Figure 8.1
Synthetic control method for the terrorist conflict in Basque Country.

To discuss the synthetic control method more formally, assume that we
have available a panel data set of n units, such that a unit’s index i ∈{1, …,
n}, which we observe over � time periods such that time index t ∈{1, …,
�}. Let us denote by Yit the observed outcome of unit i in period t.
Furthermore, we assume (without loss of generality) that only the last unit i
= n in the data is treated in a period T0 + 1, with T0 denoting the last period
prior to treatment, which satisfies T0 ≥ 1. Therefore, the treatment takes
place in a period after the first period, implying that 1 < T0 + 1 ≤�. For any
posttreatment period t ≥ T0 + 1, we obtain an estimate of the treatment effect
for the treated unit i = n, denoted by , as the difference of the treated
outcome and a weighted average of nontreated outcomes in that period:



where  is a specific weight or importance of some nontreated unit.
In its most basic version, the idea of the synthetic control method is to

choose the weights such that the weighted average of pretreatment
outcomes of nontreated units matches the evolution of the pretreatment
outcome of the treated observation: that is, up to period T0. This approach
assumes that we can appropriately model the treated unit’s posttreatment
potential outcome under nontreatment by means of the reweighted
outcomes of actually nontreated units. Put differently, controlling for
pretreatment outcomes Yit over periods t ∈{1, …, T0} must be sufficient to
control for confounders entailing diverging potential outcomes under
nontreatment of the treated and nontreated units in the posttreatment
periods. Formally, we choose the weights such that

This approach seems quite related to a selection-on-observables
framework, as discussed in chapter 4, with pretreatment outcomes serving
as covariates to be controlled for. To better see this, assume for a moment
that a nontreated observation j has observed pretreatment outcomes very
similar to the treated observation i, and therefore receives the weight ,
while all other nontreated observations have a weight of zero. This is
equivalent to pair matching, as formally discussed in equation (4.20) in
section 4.3 of chapter 4 when using the pretreatment outcomes as covariates
and considering only one treated observation. And like the selection-on-
observables framework, the synthetic control method relies on a type of
common support condition concerning the existence of treated and
nontreated units that are similar in terms of pretreatment outcomes, namely,
the so-called convex hull condition. The latter implies that the pretreatment
outcomes of the treated unit are not too extreme compared to the nontreated
units—in particular, not much higher than the highest or much lower than
the lowest outcome of nontreated units in any pretreatment period.
Furthermore, and similar to the DiD context in chapter 7, anticipation
effects must be ruled out, such that the pretreatment outcomes of the treated
unit are not affected by the treatment being introduced.



In most applications, the weighted average is computed based on several,
albeit usually few nontreated units to interpolate the potential outcome,
implying that weights are sparse in the sense that only a few units receive
nonzero weights. In the prototypical synthetic control approach, therefore,
the weight of any nontreated unit i is either positive or zero (i.e., ),
while all weights add up to 1, as required for a properly weighted average;
that is, . More formally, the collection of weights 

 is computed based on the following least squares
approach, with ω* denoting candidate values for the weights:

We note that each pretreatment period is deemed equally important in the
optimization problem given in equation (8.3). Put differently, all of the
treated unit’s pretreatment outcomes are considered equally appropriate for
creating a synthetic control that permits assessing the causal effect. In
practice, however, we might want to give a different importance to different
periods, such as giving a higher weight to more recent pretreatment periods.
This can be motivated by the assumption that having comparable outcomes
across treated and nontreated units just prior to treatment introduction is
more relevant to the plausibility of the selection on-observables-assumption
than is similarity in rather distant pretreatment outcomes. Accounting for a
differential importance of periods is easily obtained by adding a period-
dependent weight, denoted by νt ≥ 0, that takes higher values for more
important periods and a value of zero for periods that should not be
considered at all:

Furthermore, it is worth noting that we may transform outcomes prior to
running the synthetic control method if this appears appropriate. For
instance, considering the logarithm of an outcome yields a causal effect that
is to be interpreted in terms of changes in log points or percent rather than
levels. As another example, we can subtract the pretreatment mean in



outcomes of a unit i from unit i’s outcome in some period t, in order to
generate demeaned outcomes, denoted by Ỹit:

Considering demeaned outcomes Ỹit rather than Yit, which is equivalent to
including a constant term α in the optimization problem in equation (8.3),
implies that weighting aims to find a combination of nontreated units with
similar changes or trends (rather than levels) in pretreatment outcomes like
the treatment unit; see Ferman and Pinto (2021). This means that we can
also apply the synthetic control method when invoking a common trend
(rather than a selection-on-observables) assumption that is closely related to
that of DiD estimation in chapter 7.

As a further modification to our initial setup, we may not only include
pretreatment outcomes, but also (or even exclusively) observed covariates X
as control variables when determining the weights of nontreated units based
on equation (8.3), to generate a synthetic control that is similar to the
treated unit in terms of those covariates. This may be useful for making the
selection-on-observables (when using outcome levels) or common trend
assumption (when using outcome changes) more plausible. There are
several possibilities of incorporating covariates in the synthetic control
method. One obvious option is to include them in an analogous way as the
pretreatment outcomes in the optimization problem in equation (8.3). An
alternative approach is to regress the outcomes on a constant and X, and to
only consider the outcome residuals (from which the influence of X has
been purged, similar to the discussion in section 5.2) in the optimization
problem in equation (8.3), as suggested by Doudchenko and Imbens (2016).

Concerning inference, we note that determining the statistical
significance of treatment effects based on synthetic controls is not
straightforward due to the peculiar setup of only one treated unit for which
the effect is to be assessed. One feasible approach is randomization
inference based on permutation (see Abadie, Diamond, and Hainmueller
(2010)), which is based on estimating placebo effects among nontreated
units for whom the true effect is known to be zero. To this end, each of the
nontreated units is iteratively considered to be the pseudotreated unit for the



purpose of estimating the placebo effect, while all remaining nontreated
units are used as the donor pool. This yields a distribution of as many
placebo effects as there are nontreated units and permits assessing how
extreme the treatment effect on the treated unit is relative to these placebo
effects. This approach appears to be related to the computation of p-values
based on bootstrap distributions; see equation (3.49) and the related
discussion in section 3.4 in chapter 3. For instance, the share of placebo
effects in period t that is larger than the effect on the treated unit 
provides a p-value for a one-sided hypothesis test under the alternative
hypothesis that the true effect is larger than zero (i.e., H1: Δn, T=t > 0), and the
null hypothesis that the effect is no more than zero (i.e., H0: Δn, T=t ≤ 0).

It is important to note that such tests may serve just as an approximation
to actual statistical significance because randomization inference is, strictly
speaking, only valid under a randomly assigned treatment (see Fisher
(1935)), a condition not likely to hold in most applications of synthetic
controls. A further possible issue with the computation of placebo effects is
that we might lack a sufficiently similar donor pool for all of the nontreated
units, which would violate the convex hull condition and entail a relatively
poor estimation of the placebo effect. As a practical solution, we could drop
such problematic nontreated units from the inference procedure. An
alternative is to normalize the placebo effects in the posttreatment periods
by the placebo effects in the pretreatment periods, namely through dividing
or scaling the placebo effects in the posttreatment periods by the placebo
effects in the pretreatment periods before computing the p-values. This
procedure adjusts the placebo effects according to the estimation quality of
the synthetic controls before assessing statistical significance; see the
discussion by Abadie, Diamond, and Hainmueller (2010).

An alternative permutation method for computing p-values is conformal
inference; see Chernozhukov, Wüthrich, and Zhu (2021), which focuses on
the placebo effects of the treated unit rather than the nontreated donor pool.
The procedure is based on the intuition that if the treatment effect in
posttreatment periods equals zero, then the distribution of the treated unit’s
pretreatment placebo effects (i.e., the difference between the observed
pretreatment outcome and the predicted synthetic control) must be
comparable to the distribution of the treatment effects in the posttreatment



periods. Therefore, permutation is based on reassigning the pretreatment
placebo effects of the treated unit to the posttreatment periods and vice
versa, in order to compute test statistics based on these permutations of
posttreatment periods. We can then verify how extreme the test statistic
based on the actual posttreatment effects in the original, nonpermuted data
is, relative to the distribution of the permutation-based test statistics.

The tests may either be implemented by randomly permuting single
effects (i.e., reassigning them to pretreatment or posttreatment periods) or
by block permutation. The latter implies that the effects are sequentially
rotated to enter the pretreatment or posttreatment periods, to account for the
ordering of and autocorrelation in the outcomes over time. We note that
such permutation-based inference with sufficiently long panel data are not
exclusive to synthetic control methods, but it might also be applied to other
estimators, like DiD approaches. Finally, and as an alternative to
permutation, we might also consider asymptotic (i.e., large sample)
variance approximations in the spirit of the methods outlined in section 3.4
for the mean effects across all posttreatment periods if they are numerous
enough, as discussed in Li (2020).

8.2 Alternative Estimators and Multiple Treated Units

We will subsequently consider several extensions and modifications of the
prototypical synthetic control method. To this end, let us first investigate
how the latter is related to standard ordinary least squares (OLS) regression,
which solves the following minimization problem for estimating the
weights (or coefficients):

It is easy to see that imposing the conditions  gives
the synthetic control approach in equation (8.3) of section 8.1 in chapter 8,
with outcomes measured in levels. Allowing a nonzero constant α*, while
maintaining , yields the previously discussed DiD-related
synthetic control method. However, when dropping the conditions 

, the weights in equation (8.6) may also become negative.



This implies that the method might (like any OLS estimator) extrapolate to
make predictions for the treated unit beyond the convex hull of observed
nontreated outcomes. Whether such a regression estimator entails greater
accuracy of the effect estimate  than the synthetic control approach in
equation (8.3) depends on the application at hand, such as the bias of
extrapolation relative to taking the weighted averages of nontreated
outcomes.

Related to the discussion in section 5.2 in chapter 5, we can use machine
learning to find the optimal model for computing the treated unit’s potential
outcome under nontreatment, and thus the treatment effect. For instance,
adding a penalty  to the optimization problem in equation (8.6)
entails a lasso regression in the spirit of equation (5.1). To find the optimal
penalization λ yielding the greatest accuracy according to the data, we may
apply cross-validation in a way that is related to permutation inference
based on nontreated units as outlined in the previous section 8.1. To this
end, we repeatedly estimate placebo treatment effects for each nontreated
unit with various choices of λ and ultimately choose the penalization that
minimizes the mean squared placebo treatment effects, as discussed by
Doudchenko and Imbens (2016).

An alternative approach not relying on cross-validation is to constrain
the sum of the absolute values of weights to be less than or equal to 1 (i.e., 

), which is known as constrained lasso; for instance, see
Raskutti, Wainwright, and Yu (2011). A further methodological twist
involves combining the potential outcome prediction based on the
prototypical synthetic control method using equation (8.3) with a possibly
penalized regression using equation (8.6) as in Ben-Michael, Feller, and
Rothstein (2021a), or other estimators like pair matching (see section 4.3)
on the pretreatment outcomes and possibly covariates as in Abadie and
L’Hour (2018). This may entail greater accuracy than each individual
method alone, very much in the spirit of the regression-based bias
correction of equation (4.35). We can use cross-validation as suggested by
Doudchenko and Imbens (2016) to determine the weight or importance
given to either method in a combination of the synthetic control method
with another estimator, which bears some resemblance to the concept of
ensemble methods discussed in section 5.3.



Interestingly, we may also apply the synthetic control method or related
estimators to scenarios with multiple treated units to estimate their ATET in
a specific outcome period, denoted as ΔD=1, T=t = E[Yt(1) − Yt(0)|D = 1]. One
obvious approach is to apply the estimator separately to each of the treated
units, such that equation (8.2) holds for each treated unit, and then average
over the effects to estimate the ATET:

with  being the effect estimate given in equation (8.1) for a treated unit
i based on the nontreated donor pool. An alternative approach is to estimate
the weights in a way that equation (8.2) holds on average for the treated
units rather than for each treated unit separately.

To discuss this possibility more formally, let us denote by 
the number of treated units and assume (without loss of generality) that the
observations are ordered in a way that all n−n1 nontreated units appear at
the top (or come first) and all treated units at the bottom (or come last) in
the data. Then, equation (8.2) is modified as follows:

where allowing the constant term  to be nonzero corresponds to a DiD-
rather than selection-on-observables-type synthetic control method. In a
related manner, equation (8.3) changes to

This synthetic DiD approach, as suggested in Arkhangelsky et al. (2019),
relies on the assumption that a weighted average of the nontreated outcomes
in the pretreatment periods permits replicating the trend of the average
potential outcome under nontreatment among the treated units. It is worth



noting that this condition about the average trend still permits the outcome
trends to differ on the individual level of each unit. The fact that we also
can apply synthetic control methods to multiple (rather than single) treated
units in panel data implies that they constitute an alternative estimation
strategy to those outlined in chapters 4 and 7 for the selection-on-
observables and common trend assumptions, respectively. Also, for the case
of multiple treated units, we may combine synthetic control with other (e.g.,
regression) methods, with the weights of each method being determined by
cross-validation. Finally, the synthetic control method can be adapted to the
case of staggered treatment introduction considered in section 7.3, as
discussed in Ben-Michael, Feller, and Rothstein (2021b). For a
comprehensive discussion of the synthetic control method, see the review
article by Abadie (2021).

To apply the synthetic DiD and synthetic control methods in R, we use
the procedures and data provided in the synthdid package by Arkhangelsky
(2021). The package is available on the online software platform GitHub.
Accessing GitHub requires first installing and loading the devtools package
and then running install github(“synth-inference/synthdid”) to install the
synthdid package, before loading it using the library command. In the next
step, we apply the data command to load the california prop99 data set on
per capita cigarette consumption in 39 US states from 1970 to 2000, which
was previously analyzed by Abadie, Diamond, and Hainmueller (2010).

The panel data’s first variable, State, corresponds to unit i, the second
variable, Year, to period T, the third one, PacksPerCapita, to outcome Y,
and the fourth one, treated, to treatment D. The latter reflects Proposition
99, a tobacco control program launched in California in 1989, which
increased cigarette taxes, channeled the tax revenues to health and anti-
smoking education budgets, and entailed anti-smoking media campaigns
and local clean indoor-air ordinances. Therefore, the treatment equals 1 for
observations from California in 1989 or later and zero otherwise. In the next
step, we transform the california prop99 data into a format suitable for
running the synthetic DiD method by applying the panel.matrices
command. The latter assumes by default that data columns 1 to 4
correspond to i, T, Y, and D, respectively, as is the case for our data set.

We store the transformed data in an object named dat and set a seed for
the reproducability of the results to follow. We then apply the synthetic DiD



method using synthdid estimate(Y=dat$Y, N0=dat$N0, T0=dat$T0), where
argument Y defines the outcome, N0 the number of nontreated units (38
states), and T0 the number of pretreatment periods (19, from 1970 to 1988).
We save the output in an object named out and estimate the variance of
treatment effect estimation based on placebo treatments among control units
by applying the vcov(out, method=‘placebo’) command. Wrapping the
latter by sqrt yields the square root of the estimated variance, the standard
error, which we save as se. Finally, we call the first object in the output of
the synthetic DiD method, out[1], and se to investigate the results. The box
here provides the R code for each step.

Running the code yields an average treatment effect of proposition 99 on
the per capita cigarette consumption in California of −15.604 packs, with
the average being across all posttreatment periods from 1989 to 2000. The
standard error amounts to 10.053 and is thus quite substantial relative to the
absolute magnitude of the causal effect.

Next, we implement the prototypical synthetic control method based on
equation (8.3) in section 8.1 rather than synthetic DiD. To this end, we
modify our previous application of the synthdid estimate command. We set
the argument omega.intercept=FALSE to rule out a nonzero intercept  in
equation (8.6), and thus avoid a DiD-type synthetic control method. We also
set weights=list(lambda=rep(0,setup$T0)) such that there are no period-
specific weights (denominated by lambda in the procedure), which is in line
with equation (8.3). We note that dropping the argument
weights=list(lambda=rep(0,setup$T0)) would allow weights to vary across
pretreatment periods, as is the case in equation (8.4). Apart from these two
modifications, we repeat the same steps as before:



Running this code yields an average reduction of cigarette consumption
in California across all outcome periods of 21.717 packs per capita, with the
standard error amounting to 11.506. Finally, we apply the plot command to
the out object to plot the treatment effect separately for each outcome
period:

This yields the graph in figure 8.2. The latter suggests that after the
introduction of proposition 99 in 1989, the reduction of cigarette
consumption in California relative to its synthetic control gradually became
more important the longer the tobacco control program was in place. We
also see that in the pretreatment periods, the synthetic control closely
matches the development of tobacco consumption in California.



Figure 8.2
Effects based on the synthetic control method.



9
Regression Discontinuity, Kink, and
Bunching Designs

9.1 Sharp and Fuzzy Regression Discontinuity Designs

The previous two chapters of this book have considered methods for causal
analysis that rely on observing outcomes and treatment states across several
time periods. Which alternative approaches to treatment effect evaluation
exist if our data does not satisfy this requirement or the previously
considered assumptions (like the common trend assumption) appear
implausible? In this chapter, we will take a look at the regression
discontinuity design (RDD), as first suggested in Thistlethwaite and
Campbell (1960). It is based on the assumption that at a particular threshold
of an observed running variable, the treatment status either changes from
zero to 1 for everyone (sharp design) or at least for a subpopulation (fuzzy
design). As an example, let us assume that the treatment of interest is
extended eligibility to unemployment benefits, to which only individuals
aged 50 or older are entitled; for instance, see Lalive (2008). The idea of the
RDD is to compare the outcomes (like unemployment duration) of treated
and nontreated subjects close to the age threshold, such as individuals aged
50 and 49. Such individuals slightly above and below the age threshold are
arguably similar in characteristics potentially affecting the outcome due to
their minor difference in age, while they differ in terms of the treatment.



The RDD, therefore, aims at imitating the experimental context at the
threshold to evaluate the treatment effect locally for the subpopulation at
the threshold. Further examples include assigning an educational treatment
(like access to a university or college) based on a threshold in the score of
an admission test or the high school grade point average, providing cash
transfers or welfare payments based on a threshold in a poverty index, or
granting discounts in the price of a product or service to customers based on
a threshold in previous sales per customer. In all these examples, it might be
argued that subjects just slightly below the score, poverty, or sales threshold
are very similar to subjects just slightly above in terms of background
characteristics also affecting the outcome, such as ability, motivation, or
other personality traits.

To formalize our discussion of the RDD, let R denote the running
variable and r0 the threshold value. If the treatment is deterministic in R
such that it is one whenever the threshold is reached or exceeded (i.e., D =
I{R ≥ r0}), the RDD is sharp in the sense that all individuals change their
treatment status exactly at r0. The evaluation of causal effects in the sharp
RDD relies on the assumption that the mean potential outcomes given the
running variable, E[Y(1)|R] and E[Y(0)|R], are continuous and sufficiently
smooth around R = r0; see the discussion in Hahn, Todd, and van der
Klaauw (2001); Porter (2003); and Lee (2008). This requires that any (and
possibly unobserved) background characteristics other than D that affect the
outcome are continuously distributed at the threshold.

Such a continuity implies that if treated and nontreated populations with
values of R exactly equal to r0 existed, the treatment would be as good as
randomly assigned with regard to mean potential outcomes. Therefore,
treated and nontreated subjects would be comparable in terms of
background characteristics affecting the outcome at R = r0. This
corresponds to a local selection-on-observables assumption conditional on
R = r0 (rather than on X, as in chapter 4). As a further condition, the density
of the running variable R must be continuous and larger than zero around
the threshold, such that treated and nontreated observations are observed
close to R = r0. Under these assumptions, we can identify a conditional or
local average treatment effect (ATE) at the threshold based on treated and



nontreated outcomes in a neighborhood � > 0 around the threshold when
letting � go to zero (denoted by � → 0):

Figure 9.1 provides a graphical illustration for the sharp RDD. It plots
the mean potential outcomes E[Y(1)|R] and E[Y(0)|R] as a function of the
running variable R. The threshold r0 at which the treatment D switches from
0 to 1 is equal to 5. For this reason, the mean potential outcome under
treatment E[Y(1)|R] is observed only based on E[Y|R] for R ≥ r0 such that D
= 1, as indicated by the solid line in the graph, but not for R < r0 such that D
= 0, as indicated by the dashed line. Likewise, the mean potential outcome
under nontreatment E[Y(0)|R] is observed only for R < r0 such that D = 0,
but not for R ≥ r0 such that D = 1. In fact, there is no common support in R
across the treatment groups that would allow comparing treated and
nontreated outcomes with exactly the same values in the running variable.

Figure 9.1
Sharp regression discontinuity design.



This contrasts with the discussion in chapter 4, where the common
support condition implies that treated and nontreated units with comparable
covariates X to be conditioned on do exist. Even though common support
fails by design in the sharp RDD, we can assess the causal effect Δr0 by the
difference in E[Y|R] just above the threshold R = r0 such that D = 1, and just
below the threshold such that D = 0. This guarantees that treated and
nontreated units are similar in terms of the running variable, and thus in
terms of mean potential outcomes. Figure 9.2 provides a graphical
illustration for this approach, where the dots represent observations with
specific values in the running variable R (plotted on the x-axis) and the
outcome Y (plotted on the y-axis), and the solid lines correspond to the
regression functions of E[Y|R] above and below the threshold. The causal
effect at the threshold, therefore, is given by the vertical difference (or
discontinuity) of these regression functions at R = r0.

Figure 9.2
Observations and regression functions above and below the threshold.

In analogy to the discussion of instrumental variables in chapter 6,
treatment take-up as a function of being above or below the threshold of the
running variable might not be perfect. This implies that in contrast to the
sharp RDD, D is not deterministic in R such that noncompliance in the
treatment participation occurs. In this case, a fuzzy RDD approach permits



assessing the causal effect on compliers at R = r0 who are induced to switch
their treatment state at the threshold. A precondition is that the share of
treated units changes discontinuously at the threshold, which implies that
compliers exist. As an illustration, let us reconsider the example that
admittance to a college (D) depends on passing a particular threshold of the
score in an admission test (R). While some students might decide not to
attend college even if succeeding in the test, a discontinuous change in the
treatment share occurs if there are compliers that are induced to go to
college when passing the threshold.

To distinguish between compliance and noncompliance, we adapt our
notation and, similar to chapter 6, denote by D(z) the potential treatment
state as a function of the binary threshold indicator Z = I{R ≥ r0}, which
now serves as an instrument for actual treatment participation. Furthermore,
let us assume that around the threshold, defiers do not exist and that the
shares of compliers, always takers, and never takers, as well as their mean
potential outcomes under treatment and nontreatment, are continuous, as
discussed in Dong (2014). This implies that instrumental variable (IV)–type
assumptions similar to those postulated in expression (6.5) when controlling
for covariates X in section 6.2 hold when conditioning on being at the
threshold R = r0.

Under these conditions, we can assess the first-stage effect of instrument
Z on treatment participation D at the threshold R = r0, denoted by γr0:

Furthermore, the first line of equation (9.1) yields the ITT effect of Z on Y
at the threshold, denoted by θr0, in the fuzzy RDD (rather than Δr0 as in the
sharp RDD). In analogy to equation (6.7) in section 6.2, the local average
treatment effect (LATE) on compliers at the threshold, denoted by ΔD(1)=1,

D(0)=0, R=r0 = E[Y(1) − Y (0)|D(1) = 1, D(0) = 0, R = r0], is identified by
dividing the intention-to-treat (ITT) by the first-stage effect at the threshold:



As ΔD(1)=1, D(0)=0, R=r0 refers to the complier subpopulation only at the
threshold, it corresponds to an even more local effect than the LATE ΔD(1)=1,

D(0)=0 considered in chapter 6. Figure 9.3 provides a graphical illustration for
the fuzzy RDD. It consists of running two sharp RDDs with D and Y as
outcomes in order to assess γr0 and θr0, respectively, and scaling the latter by
the former to obtain ΔD(1)=1, D(0)=0, R=r0.

Figure 9.3
The fuzzy regression discontinuity design.

In empirical applications of the RDD, the treatment effect is
predominantly estimated by local regression around the threshold.
Considering a sharp RDD, analysts or researchers frequently use a linear
ordinary least squares (OLS) regression for estimating E[Y|D = 0, R < r0]
and E[Y|D = 1, R ≥ r0] within bandwidth � around r0 in order to estimate Δr0

by the difference of the regression functions at R = r0. We may implement
this approach by estimating equation (9.4), which characterizes the
conditional mean outcome Y as a function of the running variable R and the
treatment indicator D = I{R ≥ r0} locally within the data window around the
threshold:



It is quite common to normalize the running variable by subtracting the
threshold value such that r0 = 0 after the normalization. In this case, the
constant term α corresponds to the mean outcome under nontreatment at the
threshold: that is, α = E[Y|R = r0, D = 0]. Coefficient βD yields the
discontinuity in the outcome functions E[Y|R = r0, D = 1] and E[Y|R = r0, D
= 0], and therefore it corresponds to the causal effect ΔR=r0, given that the
linear model specification is correct within bandwidth � around the
threshold. In this context, it is worth noting that the inclusion of the
interaction term βR, DR · I{R ≥ r0} in equation (9.4) permits the linear
association of Y and R to be different below and above the threshold
(implying a nonzero coefficient βR, D), as is the case in figure 9.1.

To make the model specification even more flexible, we can in principle
also include higher-order terms of R and interact these terms with D. This
entails a polynomial (or series) regression, as considered in a different
context in section 4.2, which can flexibly model nonlinear associations as in
the example in figure 9.3, and therefore reduces the risk of misspecification
relative to a linear model. However, when bandwidth � is relatively small,
so is the bias of the linear model from linearly approximating the nonlinear
association between Y and R. Including too many higher-order terms, on the
other hand, can increase the variance due to the limited number of
observations around the threshold. This may explain why local linear
regression is frequently the preferred choice in empirical applications.

Such a bias-variance trade-off, as for the choice of more or fewer higher-
order terms, also occurs for the selection of bandwidth �. A smaller
bandwidth decreases estimation bias because treated and nontreated units
are closer to the threshold, and thus more comparable in terms of
background characteristics. Therefore, effect estimation is more robust to
model misspecification of the association between Y and R (when assuming
a linear rather than a nonlinear model); for instance, see the discussion by
Gelman and Imbens (2018). On the other hand, a smaller bandwidth
increases the variance due to relying on a lower number of observations.
For this reason, we would like to optimally trade off the bias and the



variance to select the bandwidth that minimizes the overall mean squared
error (MSE). Imbens and Kalyanaraman (2012) offer such a method for
optimal bandwidth selection, based on a formula of the MSE as a function
of the bandwidth. The formula includes the conditional means and
variances of the outcome just below and above the threshold, as well as the
density of R at r0 as parameters.

A further approach is to use leave-one-out cross-validation, as
introduced in section 4.2 in a different context. In the spirit of equation
(4.18), the optimal bandwidth is determined based on checking how well a
regression of Y on R predicts the values of Y in the data when trying a range
of bandwidth values. Whenever predicting the outcome of an observation i
based on a specific bandwidth �, we leave i out of the sample when
estimating the regression coefficients to avoid overfitting. Furthermore, and
in order to mimic the fact that RDD is based on a regression at the
threshold, we estimate the regression function using only observations with
values of R less than Ri (such that Ri − � ≤ R < Ri) if the running variable of
observation i is below the threshold. Accordingly, we consider only
observations with values R larger than Ri in the estimation (such that Ri < R
≤ Ri + �) if Ri is above the threshold. Following Ludwig and Miller (2007),
we then pick the bandwidth that minimizes the MSE, possibly when only
considering a specific range of values in R that are not too far from the
threshold. As a further alternative, and related to the discussion in section
8.2 on placebo treatments for finding the optimal model specification,
bandwidth � (and other RDD parameters) might also be selected based on
placebo zones, in which the running variable contains no treatment
discontinuity. Kettlewell and Siminski (2020) suggest estimating a placebo
treatment effect based on various choices concerning the bandwidth and the
number of higher-order terms of R as well as interaction terms to finally
pick the RDD specification whose effect is closest to zero.

As a caveat against bandwidth selection, it turns out that the bandwidth
which is optimal for effect estimation is generally suboptimal and too large
for conducting inference, such as for computing valid confidence intervals
and p-values, as discussed in Calonico, Cattaneo, and Titiunik (2014). The
authors therefore suggest inference methods that are more robust to the
choice of the bandwidth, such that the resulting confidence intervals are



likely more accurate, meaning that they more closely match the desired
nominal coverage rate of e.g., 95 percent. The findings of Calonico,
Cattaneo, and Titiunik (2014) imply that when Δr0 is estimated by linear
regression within a bandwidth, then quadratic regression (i.e., a regression
that is one order higher) with the same bandwidth should be used for the
computation of the standard error and confidence intervals.

Armstrong and Kolesár (2018) suggest an alternative approach for
inference that (under certain conditions) permits computing the worst-case
bias that could arise given a particular bandwidth choice. This bias can then
be accounted for by an appropriate adjustment of the critical values for
hypothesis testing (e.g., of whether the effect is nonzero at the threshold) or
for constructing confidence intervals. This implies for the 5 percent level of
statistical inference, for instance, that the asymptotic critical value is
somewhat larger than the conventional value of 1.96 (as considered in
section 3.4 in chapter 3). Yet another approach is randomization inference,
as previously discussed in section 8.1 in chapter 8 for the synthetic control
method. It consists of (1) repeatedly randomly permuting observations close
to the threshold to be part of the treated or nontreated group when
computing the effect and (2) verifying how extreme the RDD effect based
on the actual treatment assignment is relative to the permuted effects to
obtain a p-value; see Cattaneo, Frandsen, and Titiunik (2015).

It is worth noting that the identifying assumptions of the RDD are partly
testable in the data. McCrary (2008) proposes a test for whether the running
variable is continuous at the threshold, as a discontinuity generally points to
a manipulation of R and selective bunching at one side of the threshold.
Considering the previously discussed example of extended eligibility to
unemployment benefits in Lalive (2008), certain employees and companies
might manipulate the age of entry into unemployment by agreeing on
postponing layoffs such that the age requirement for extended
unemployment benefits is met. In this case, we would observe a
discontinuity in the density or frequency of unemployed individuals aged
49 as opposed to 50 years. As a further test, Lee (2008) suggests
investigating whether observed pretreatment covariates X are locally
balanced at either side of the threshold, as any background characteristics



that might affect the outcome must be balanced under the continuity
assumptions on the potential outcomes.

However, covariates also permit weakening such continuity assumptions
to only hold conditional on X, implying that all variables jointly affecting
manipulation at the threshold and the outcome are observed. Frölich and
Huber (2019) propose a kernel regression-based estimator in this context to
control for differences in X above and below the threshold. In contrast,
Calonico, Cattaneo, Farrell, and Titiunik (2018) do not exploit covariates to
tackle confounding, but rather to reduce the variance of effect estimation
when linearly controlling for X and provide methods for optimal bandwidth
selection and robust inference for this case. In the spirit of the discussion in
chapter 5, we may also apply machine learning methods to optimally
control for covariates in a data-driven way, as considered by Noack, Olma,
and Rothe (2021) and Arai, Otsu, and Seo (2021), or to investigate effect
heterogeneity across covariates, as in Reguly (2021).

The causal effect obtained from an RDD is rather local, in the sense that
it only refers to subjects close to the threshold of the running variable in the
case of the sharp RDD, and to the even smaller group of compliers at the
threshold in the case of the fuzzy RDD. Is it possible to extrapolate these
effects to other populations farther from the threshold under certain
conditions? Dong and Lewbel (2015) show that this can be achieved to
some extent based on computing the derivative of the treatment effect at the
threshold (in sharp or fuzzy designs), which permits evaluating the change
in the effect resulting from a marginal change in the threshold.

Another approach is offered by Angrist and Rokkanen (2015), who test
whether the running variable’s association with the outcome vanishes on
either side of the threshold conditional on covariates X. In the case of the
sharp RDD, this implies that X is sufficient to control for confounding just
as under the selection-on-observables framework of chapter 4, such that we
can identify treatment effects also for populations away from the threshold.
In context of the fuzzy RDD, Bertanha and Imbens (2019) propose a test for
the equality in mean outcomes of treated compliers and always takers, as
well as of untreated compliers and never takers. This permits investigating
whether the effect on compliers at the threshold may be extrapolated to all
compliance types (and thus the total population) at and away from the
threshold. There are several important extensions or modifications of the



conventional RDD with a continuous running variable and a single
threshold. In some scenarios, there might be multiple thresholds due to
varying threshold values across observations, such as in political elections
under plurality rules (with vote share as running variable); for instance, see
Cattaneo, Keele, Titiunik, and Vazquez-Bare (2016). In other scenarios, the
running variable might be discrete (like age measured in years rather than
days) rather than continuous. This generally entails challenges for effect
identification and inference, as discussed in Lee and Card (2008), Dong
(2015), and Kolesár and Rothe (2018). In some applications, there might
even be multiple running variables (rather than just one) that determine
treatment assignment, such as geographic coordinates based on longitude
and latitude; for instance, see Papay, Willett, and Murnane (2011) and Keele
and Titiunik (2015). In this context, Imbens and Wager (2019) propose an
optimization-based inference method for computing confidence intervals
that can be applied to continuous, discrete, and multiple running variables.
As a further extension, Frandsen, Frölich, and Melly (2012) discuss the
evaluation of quantile (rather than average) treatment effects at the
threshold. Finally, Imbens and Lemieux (2008), Lee and Lemieux (2010),
Melly and Lalive (2020), and Cattaneo and Titiunik (2021) provide more
comprehensive surveys of the RDD literature.

Let us consider an application of the sharp RDD in R, and to this end,
load the rdrobust package by Calonico, Cattaneo, Farrell, and Titiunik
(2021). It contains the data set rdrobust RDsenate with 1,390 observations
on elections for the US Senate analyzed in Cattaneo, Frandsen, and Titiunik
(2015), which we load using the data command. The effect of interest is the
incumbent-party advantage: that is, the question of whether winning a
Senate seat in the previous election provides an advantage for winning the
same seat in the following election. We define the outcome to be the share
of votes of the Democratic Party in elections for the Senate measured in
percent: Y=rdrobust RDsenate$vote. The running variable is the
Democrats’ margin of winning relative to the Republican Party in the
previous elections: R=rdrobust RDsenate$margin. A positive margin
implies that the Democrats won the seat in the previous elections, while a
negative margin means that they lost the previous elections. At the
threshold around zero, previous elections in which the Democrats just won
(D = 1) or lost (D = 0) by a small margin are assumably rather comparable



in terms of outcome-relevant background characteristics (like regional
political preferences).

To run a sharp RDD, we feed outcome Y and the running variable R into
the rdrobust command, which by default considers zero as the threshold
value, such that only observations with nonnegative values in the running
variable are classified as treated. Furthermore, the command includes a
procedure for optimal bandwidth selection in terms of minimizing the effect
estimator’s MSE and by default runs a local linear kernel regression (see
also section 4.2) within that bandwidth using the triangular kernel.
Therefore, observations within the bandwidth get a smaller weight (or less
importance) the farther they are from the threshold, while observations
outside the bandwidth are not considered for effect estimation at all. We
save the output in an object named results, which we wrap by the summary
command to inspect the results. The R code for each step is provided in the
box here.

Running the commands gives the following output:



The results suggests that for margins close to the threshold, winning a
seat in the Senate in previous elections increases the vote share in the
following elections by 7.4 percentage points. The output also provides p-
values and confidence intervals when relying on conventional or robust
inference methods as suggested in Calonico, Cattaneo, and Titiunik (2014).
In either case, the null hypothesis of no incumbent party effect is rejected at
any conventional level of significance, as p-values are very close to zero.
The method also provides an estimate of the optimal bandwidth BW est. (h),
which amounts to 17.75 percentage points, and the number of nontreated
and treated observations within the bandwidth (360 and 323, respectively).
In the second step, we visualize the regression discontinuity by a data-
driven plot of the outcome against the running variable using the rdplot
command:

Running the command yields the graph displayed in figure 9.4. The dots
correspond to average outcomes within bins of values of the running



variable, while the solid lines give nonlinear regression curves of the
outcome as a function of the running variable above and below the
threshold, respectively. The graph points to a nonnegligible discontinuity in
mean outcomes at the threshold, in line with the results of our RDD
estimation.

Figure 9.4
Plot of the discontinuity.

To partly check the assumptions underlying the RDD approach, in the
next step we apply the McCrary (2008) test for a discontinuity in the
density of the running variable at the threshold. To this end, we load the rdd
package by Dimmery (2016) and feed the running variable R into the
DCdensity command, which by default assumes the threshold to be equal to
zero:

Running this code yields a p-value of 0.3898 (or 38.98 percent) such that
the continuity of the runnig variable around the threshold cannot be rejected



at conventional levels of statistical significance. For this reason, we find no
statistical evidence for a manipulation of the running variable.

Let us now consider an application of the fuzzy RDD to a data set that is
part of the RDHonest package by Kolesár (2021), which is available on the
GitHub platform. Accessing GitHub requires first loading the devtools
package and then running install github(“kolesarm/RDHonest”) to install
the RDHonest package before loading it using the library command. In the
next step, we run data(rcp) to load the rcp data, which was analyzed in
Battistin, Brugiavini, Rettore, and Weber (2009) and contains information
on household consumption, as well as pension eligibility and actual
retirement of the household head.

In our fuzzy RDD, we consider being just above or below the age
threshold for pension eligibility as an instrument for actual retirement (D) to
estimate the effect of the latter on a measure of consumption—namely,
household expenditures on nondurables (Y), apparently measured in euros
(EUR) per year. We therefore define the outcome Y=rcp$cn; the running
variable R=rcp$elig year, which measures the age in years to/from reaching
pension eligibility such that the threshold is zero; and the treatment
D=rcp$retired. In the next step, we run the previously used rdrobust
command of the rdrobust package using Y and R, but now we also specify
the argument fuzzy=D. The latter indicates that we use a fuzzy RDD in
which D corresponds to the actual treatment participation. We store the
output in an object named results, which we wrap by the summary
command:

Running the code yields the following output:



We find that retirement reduces the spending on nondurable consumption
goods by 5,603.34 EUR among compliers at the threshold: that is, among
individuals who retire exactly when they reach the eligible pension age.
Both conventional and robust inference yield p-values of roughly 7 percent,
such that the reduction in consumption due to retirement is statistically
significant at the 10 percent level, but not at the 5 percent level. The
estimate of the optimal bandwidth around the threshold is 4.95 years, and
the number of nontreated and treated observations within the bandwidth
amounts to 1,599 and 2,078, respectively.

9.2 Sharp and Fuzzy Regression Kink Designs

A further approach to causal analysis that exploits a specific threshold in
treatment assignment is the regression kink design (RKD) suggested by
Card, Lee, Pei, and Weber (2015), which is technically a first derivative
version of the fuzzy RDD. It can be applied to continuous (rather than
binary) treatments that are a function of the running variable R with a kink
in that function at r0, rather than a discontinuity as in the RDD.
Mathematically, this implies that the first derivative of the continuous



variable D with regard to R (rather than the level of D, as in the RDD) is
discontinuous when crossing the threshold.

To gain some intuition, let us consider an example inspired by Landais
(2015), where the amount of unemployment benefits (measured in euros,
for instance) received by job seekers is treatment D, which is a kinked
function of the previous wage, R. Namely, the benefit D corresponds to a
certain percentage (e.g., 0.8 or 80 percent) of the previous wage, R, up to a
maximum previous wage r0 (e.g., 5,000 EUR), beyond which D remains
constant. In this case, treatment D is a piecewise linear function whose
derivative with regard to R (i.e., D’s change as a function of R), corresponds
to the percentage (0.8) for R < r0, and to zero for R ≥ r0. As the treatment is
deterministic in the running variable in our example, this is known as sharp
RKD.

Under specific conditions that are related to those in section 9.1, such as
continuously distributed mean potential outcomes and a smooth density of
the running variable R (and, in particular, its first derivative) around
threshold r0, we can identify a causal effect at the threshold. The RKD
consists of scaling the reduced form change in the first derivative of the
mean outcome with regard to R at the threshold by the first-stage change in
the first derivative of D with regard to R at the threshold. This is somewhat
related to an IV approach in which we scale the reduced-form effect of the
instrument on the outcome by the first-stage effect of the instrument on the
treatment (see section 6.1 in chapter 6). The effect that is identified by the
RKD corresponds to the average derivative of the potential outcome with
respect to treatment D when the latter is set to its value at the threshold,
denoted by d0, within the local population at R = r0. This is a marginal
treatment effect, as previously considered for continuous treatments in
sections 3.5 and 4.8, but exclusively at R = r0.

Formally, the marginal treatment effect at the threshold is defined as
follows:



where � > 0 is a neighborhood or bandwidth around the threshold that tends
to zero. Figure 9.5 provides a graphical illustration for the first-stage effect
of R on D in this sharp RKD, where the treatment (e.g., unemployment
benefits) is a deterministic and (in our case) linear function of the running
variable (e.g., previous earnings). The denominator in equation (9.5)
corresponds to the difference in the slope of this function above and below
the threshold, corresponding to 0 and 0.8, respectively, in the previously
discussed example. If the association of the average outcome and R is linear
(at least within the bandwidth �), then the numerator in equation (9.5)
corresponds to the difference in the slope coefficients in separate
regressions of Y on a constant and R above and below the threshold,
respectively, within �.

Figure 9.5
Sharp regression kink design.

In contrast to the sharp RKD, the fuzzy RKD permits random deviations
of the treatment values from the kinked function characterizing the
association between D and R. Therefore, D is not exclusively determined by
R, but the treatment nevertheless changes on average as a function of the
running variable, which can be characterized by a regression model. As an
example, consider the framework in Simonsen, Skipper, and Skipper
(2016), in which the consumer price of prescription drugs in Denmark is the
treatment variable D. The latter is a kinked function of a drug’s actual costs,
the running variable R, due to a reimbursement scheme that implies that the



share of the costs borne by consumers decreases in the costs up to a specific
threshold and remains constant thereafter.

Nevertheless, the actual consumer price might deviate somewhat from
that kinked function due to unobserved factors, particularly nonstandard
reimbursement arrangements through private (rather than public) health
insurance, which motivates the application of the fuzzy RKD. Under
specific continuity conditions and the monotonicity-type assumption that
the kink in the association between D and R of any individual either goes in
the same direction or is zero, we can identify a causal effect at the threshold
among individuals with nonzero kinks. Requiring that the kink cannot be
downward sloping for some individuals and upward sloping for others is
somewhat related to ruling out the existence of defiers when applyig IV
methods (see chapter 6). Furthermore, the subpopulation with nonzero
kinks at the threshold is related to the notion of compliers in the IV context.

To use the fuzzy (rather than the sharp) RKD, the derivatives of the
treatment in equation (9.5) (namely,  and ), are to be
replaced by the derivatives of the conditional expectations 
and . This yields the average marginal effect of treatment D at
value d0 among complying individuals with a nonzero kink at the threshold
r0:

Figure 9.6 provides a graphical illustration of the first-stage effect of R on D
in the fuzzy RKD. The solid line corresponds to the conditional mean of the
treatment, given the running variable, and is a piecewise linear regression
function with a kink at threshold r0. The dots represent actual treatment
realizations of subjects in the population, which randomly deviate from the
regression line.



Figure 9.6
Fuzzy regression kink design.

It is worth noting that the expectation (or regression function) of a
treatment may be continuous even if the treatment itself is not. For this
reason, the fuzzy RKD, in contrast to the sharp RKD, may also be applied
to a binary D, as discussed in Dong (2014). Concerning statistical inference,
Calonico, Cattaneo, and Titiunik (2014) provide robust methods for
computing confidence intervals and p-values for the sharp and fuzzy RKD
in an analogous way as they do for the RDD, as discussed in the previous
section 9.1. Furthermore, Ganong and Jäger (2018) propose a permutation
method based on placebo treatments that is in the spirit of randomization
inference, as discussed in sections 8.1 and 9.1.

To implement the fuzzy RKD in R, we apply the rdrobust command
already considered in section 9.1 to data from Lundqvist, Dahlberg, and
Mörk (2014) to analyze the effect of intergovernmental grants on local
public employment. This data set, finaldata.dta, can be accessed via the
website of the American Economic Journal: Economic Policy (https://www
.aeaweb.org/articles?id=10.1257/pol.6.1.167). It is, however, saved in the
format of another statistical software program than the one considered in
this book (namely, Stata). To be able to read this data format, we load the
haven library by Wickham and Miller (2021). We download the data set and
save it on a hard disk, which in our case has the label C: (but this might
differ for other computers). We then load the data into R and store it in an

https://www.aeaweb.org/articles?id=10.1257/pol.6.1.167


object named data by applying the read dta command to the location (or
path) of the file on our hard disk: data=read dta(“C:/finaldata.dta”).

We analyze the effect of intergovernmental grants (D) in Sweden (i.e.,
financial transfers from the Swedish central government to municipalities),
on local public employment (Y): that is, the number of fulltime municipal
employees per 1,000 inhabitants. The grants are partly determined by
compensations aimed at supporting municipalities with diminishing
population size, particularly due to out migration, which are kinked:
municipalities with a decreasing population receive a positive
compensation, while it is zero for growing municipalities. The population
growth therefore serves as running variable R for the intergovernmental
grants, which are, however, also determined by other components. For this
reason, D is not fully deterministic in R, which motivates the application of
the fuzzy RKD. To this end, we define the outcome Y=data$pers total, the
running variable R=data$forcing, and the treatment
D=data$costequalgrants and feed them into the rdrobust command.
Importantly, we now (and in contrast to the application at the end of section
9.1) set the argument deriv=1 to run a fuzzy RKD rather than an RDD. We
save the output in an R object named results, which we wrap by the
summary command. The box here provides the code for each of the steps.

Running the commands yields the following output:



The estimate suggests that increasing intergovernmental grants by 1 unit,
which corresponds to 100 krona per capita, generates on average a bit more
than one additional full-time job in local public employment. This effect
refers to complying municipalities whose total of intergovernmental grants
is indeed kinked at the population growth–related compensation threshold
as a function of these compensations. However, the effect is far from being
statistically significant when relying on conventional or robust inference
methods, as suggested in Calonico, Cattaneo, and Titiunik (2014).
Therefore, we cannot reject the null hypothesis that the grants do not
influence local public employment.

9.3 Bunching Designs

Somewhat related to the RDD and RKD, bunching designs exploit
discontinuities or kinks in assignment variables due to a specific threshold
of a running variable, as considered in Saez (2010) and Chetty, Friedman,
Olsen, and Pistaferri (2011). However, while the assumptions underlying
the RDD and RKD rule out self-selection around the threshold, bunching
relates to exactly the opposite scenario—namely, that subjects can choose



the level of the running variable and thus whether they are located above or
below the threshold. Let us consider gross earnings as the running variable
and a tax system in which gross earnings are not taxed up to a certain
threshold while any gross earnings beyond that threshold are taxed with a
positive rate (e.g., 10 percent). This will entail a kinked function of net
earnings because the latter are equal to the gross earnings below the
threshold, but less than the gross earnings above the threshold due to the
positive tax rate.

In such a scenario, some individuals might feel that relative to the
earnings just below the threshold (where no tax is imposed), working more
to obtain a higher income is not worth the effort because part of the
additional earnings are lost to tax. For those individuals, the tax creates a
disincentive to work that is strong enough to reduce the gross earnings that
they would have realized without tax to a value that is just below the
threshold. In other words, those who are discouraged to work more bunch
together just below the threshold, which violates the continuity of the
running variable conventionally required and tested in the RDD and RKD.

Let us consider a further example involving a discontinuity or notch
(rather than a kink) as discussed by Kleven and Waseem (2013). We again
assume that up to a specific threshold, gross earnings are not taxed at all.
Beyond the threshold, however, a tax is imposed on the total gross earnings,
even those below the threshold. This implies that net earnings are
discontinuously reduced at the threshold when switching from gross
earnings that are not subject to taxes to slightly higher gross earnings that
are taxed, thus once again inducing disincentives to work and bunching
below the threshold.

The aim of bunching designs is to evaluate to which extent such
bunching occurs: that is, how such a kink or notch (discontinuity) in net
earnings implied by a specific tax regime affects the distribution of gross
earnings. It is therefore the running variable that is the outcome of interest
in bunching designs. Assessing the causal effect of the kink or notch
proceeds in two steps. First, we estimate the density function (or the
frequency counts) of the running variable, typically based on a polynomial
function (see section 4.2 for a discussion of series or polynomial
regression). However, the estimation excludes observations within a
specific bandwidth around the threshold where the mentioned disincentives



are likely relevant and bunching may occur. Second, we extrapolate (or
predict) the estimated density function to the area within the bandwidth
around the threshold. The difference in the observed and extrapolated
density of gross earnings just below the threshold yields an estimate for the
magnitude of bunching: that is, the excess density due to the disincentives
to work. This excess density just below the threshold should be exactly
matched by a reduced density over a range above the threshold, implying
that the observed density is below the extrapolated density. This
requirement may be exploited as a specification test for the appropriate
estimation of the density function.

Figure 9.7 provides a graphical illustration of bunching based on a
hypothetical example. It plots net income (on the y-axis) as a function of
gross income (on the x-axis), which has a kink at a monthly gross income of
1,000 US dollars (USD) due to the imposition of an income tax on any
gross income beyond the threshold r0 = 1, 000. The graph also plots the
frequencies of workers (on the y-axis) with a specific gross income (on the
x-axis), thus yielding the distribution of gross income. Due to the
disincentive to work around the threshold, we observe a spike in the
frequency of gross income just below the threshold: that is, bunching.
Accordingly, the frequencies drop substantially over a range just above the
threshold due to the lack of individuals who have been induced to bunch by
the tax. The dotted line provides the counterfactual frequencies that would
have been observed in the absence of the tax. The aim of bunching is to
estimate this counterfactual distribution by extrapolating the actual
distribution observed farther from the threshold in order to determine the
amount of bunching below the threshold, which corresponds to the tax-
induced reduction in frequencies above the threshold.



Figure 9.7
Bunching in the running (=outcome) variable.

Yet another, conceptually different design concerns bunching in a
continuous treatment as a consequence of censoring, as discussed in
Caetano (2015). Censoring implies that the treatment cannot be lower or
higher than a specific threshold. As an example, let us consider a
continuous measure of education as the treatment variable and assume that
by law, there are nine years of compulsory schooling. For this reason, any
individuals who would have chosen a lower level of education in the
absence of the compulsory schooling law bunch at exactly nine years of
education. Such individuals engaging in bunching generally differ from
subjects with a slightly higher level of education (where no bunching
occurs) in terms of unobserved characteristics like ability and motivation,
henceforth denoted by U. In other words, bunching induces a discontinuity
in unobservables at the threshold, as individuals with rather selective (e.g.,
comparably low) values in U are concentrated at the lower bound of the
treatment (in our case, nine years of schooling).



Figure 9.8 illustrates this scenario by plotting the average of U, which is
presumably a single unobservable to simplify the discussion, as a function
of D. As the treatment cannot be lower than the threshold set by the
compulsory schooling law, which is indicated by the dashed line for D < 9,
there is bunching at D = 9. Given that bunching individuals tend to have
lower values of U, the mean of the latter is discontinuously lower at D = 9
than at slightly higher values of the treatment where bunching does not
occur.

Figure 9.8
Bunching in the treatment variable: discontinuity in unobservables.

This scenario can be exploited to estimate the treatment selection bias
that arises if U jointly affects treatment D and outcome Y; see the discussion
in section 2.2 in chapter 2. As illustrated in figure 9.9, the approach is based
on estimating the regression function E[Y|D] in a data window close to but
not including D = 9 in order to predict the regression function at D = 9. This
is very much related to the estimation of regression functions at the



threshold of the running variable in the RDD. In the next step, we subtract
from the prediction (or extrapolation) of the conditional mean of Y at D = 9
the average outcome among those previously excluded observations whose
treatment is exactly 9, which is an estimate for E[Y|D = 9]. This difference
yields an estimate of the bias due to unobserved characteristics. We may
also run this approach when controlling for observed covariates X to verify
whether the latter permits tackling treatment selection bias. Moreover,
under specific parametric assumptions, treatment selection bias can even be
corrected in the estimation of treatment effects; for instance, see Caetano,
Caetano, and Nielsen (2020) for a more detailed discussion of this matter.

Figure 9.9
Bunching in the treatment variable: discontinuity in outcome.

To consider an example for the analysis of bunching related to tax
brackets in R, we load the bunching package by Mavrokonstantis (2019),
which includes an artificially created data set named bunching data. The
latter contains a variable named kink vector consisting of 27,510 simulated



earnings under a tax kink at a threshold value of 10,000, which we define as
the outcome variable Y. Next, we set a seed for the reproducability of the
results to follow. To estimate the magnitude of bunching, we run the bunchit
command and set z vector=Y to feed in the outcome and zstar=10000 to
define the threshold value of the tax brackets. The command also requires
specifying the width of bins for outcome counts, which we set to
binwidth=50. Further arguments are bins l and bins r, the number of
earnings bins left and right of the threshold that are assumably affected by
bunching, respectively, which we set to 20 in either case. Finally, t0 and t1
define the marginal tax rates below and above the threshold, respectively,
which drive the financial incentives for bunching, which in our case are 0 (0
percent) and 0.2 (20 percent). We save the output in an object named b and
call b$B, b$B sd and b$plot to investigate the results. The box here provides
the R code for the various steps.

Running the code yields an estimated excess mass of earnings right
below the threshold of 630.29 observations due to bunching, with a
standard error of just 82.43. The results therefore point to nonnegligible
bunching due to taxing, as also illustrated in figure 9.10, which is created
by calling b$plot. While the dots and the line connecting them correspond
to the earnings counts actually observed in the outcome bins, the smooth
solid line provides the estimated counterfactual counts based on
observations outside the bandwidth of 20 bins around the threshold. The
estimated and observed frequencies differ importantly at the threshold,
suggesting bunching.



Figure 9.10
Bunching due to a kink in taxation.



10
Partial Identification and Sensitivity
Analysis

10.1 Partial Identification

Any of the approaches to causal analysis discussed in the previous chapters
are based on assumptions that permit identifying a single value for the
causal effect of interest, such as an average wage effect of 30 euros (EUR),
which is known as point identification. In contrast, partial or set
identification refers to a scenario where a causal effect (or another
parameter of interest) cannot be uniquely determined to take a single value
but is only restricted to lie within a certain interval or set of possible values.
Considering the average treatment effect (ATE) of a training program on
wages, a statistical method may suggest that the effect amounts to some
value between 20 and 40 EUR. The ATE is thus partially identified within
the set [20, 40], while its exact value remains unknown. Partial
identification arises when we impose weaker (or even no) statistical
assumptions than those considered in the previous chapters, such as the
selection-on-observables assumptions discussed in chapter 4. This may be
preferable when stronger assumptions required for point identification do
not seem plausible in a given empirical context.

We therefore face an important trade-off in data-based causal analysis:
the stronger the statistical assumptions that we impose, the more concisely



we can determine a causal effect, but the higher is the risk that our
statistical assumptions fail to correctly describe the real-life behavior of
study participants. The latter issue can entail inappropriate (i.e., biased and
inconsistent) effect estimation. Partial identification makes such trade-offs
explicit. The set of treatment effect values is typically large when no or few
assumptions are imposed, but it becomes smaller as further assumptions are
added. The set eventually collapses to point identification (i.e., a single
value of the causal effect), when previously considered constraints like the
selection-on-observables assumptions are imposed.

To discuss the concept of partial identification more formally, let us
consider the mean of the potential outcome under treatment Y(1) and recall
that the latter is only observed for the treated observations, whose share in
the population corresponds to the treatment probability Pr(D = 1). However,
Y(1) is not observed for the nontreated observations, whose share amounts
to Pr(D = 0) = 1 − Pr(D = 1). By the law of total probability, the mean
potential outcome E[Y(1)] in the population is a weighted average of the
respective mean potential outcomes among the treated and the nontreated:

Analogous arguments apply to the mean of the potential outcome under
nontreatment Y(0), which is observed for the nontreated, but not observed
for the treated observations:

As discussed in section 3.1 in chapter 3, we can easily identify the ATE
by mean differences in observed outcomes across treated and nontreated
groups if the independence assumption in expression (3.1) is satisfied as
implied by the successful random assignment of the treatment. In this case,
it holds that E[Y(1)|D = 0] = E[Y (1)|D = 1] = E[Y |D = 1] and E[Y(0)|D = 1]
= E[Y (0)|D = 0] = E[Y |D = 0]. In the subsequent discussion, however, we
refrain from making such an independence assumption. We thus permit



selection into treatment, which implies that E[Y(1)|D = 0] ≠ E[Y (1)|D = 1]
and E[Y(0)|D = 1] ≠ E[Y (0)|D = 0]; see section 2.2 in chapter 2. Without
further assumptions, we cannot identify the ATE. However, by putting
upper and lower bounds on the unobserved means E[Y(1)|D = 0] and
E[Y(0)|D = 1] in equations (10.1) and (10.2), we can restrict the means to lie
within a range or set of minimum and maximum values in order to bound
the ATE within a specific set of values.

Let us, for instance, assume that there are theoretical maximum and
minimum values that the outcome can take under either treatment state,
which we denote by yUB and yLB, respectively. Considering overnight stays
in a hotel as the outcome, the latter might be bounded to lie within 0 and
100 guests (due to capacity constraints), such that yLB = 0 and yUB = 100. We
may then replace the unobserved means in equations 10.1 and 10.2 by yUB

or yLB, respectively, to obtain upper or lower bounds on mean potential
outcomes E[Y(1)] and E[Y(0)]. We denote these bounds on the mean
potential outcomes by E[Y(1)]UB and E[Y(1)]LB, as well as E[Y(0)]UB and
E[Y(0)]LB, respectively, which are formally defined as follows:

As discussed in Manski (1990), taking differences between the upper bound
under treatment and the lower bound under nontreatment or the lower
bound under treatment and the upper bound under nontreatment yields
upper and lower bounds on the ATE, denoted by ΔUB and ΔLB, respectively:

In general, these worst-case ATE bounds provided in equations (10.4)
are wide in empirical applications, such that the set of possible causal
effects is quite large, and therefore not very informative. However, we may
tighten the width of these bounds by imposing further assumptions. For
instance, we could assume different upper and lower outcome bounds
across treated and nontreated observations (rather than the same yUB and



yLB). As an example, it could appear plausible that under treatment (like a
marketing campaign), the lower bound on an outcome (like sales) is higher
than its lower bound under nontreatment. A further assumption that permits
tightening the ATE bounds is monotone treatment response (MTR), as
suggested in Manski (1997). For binary treatment D and positive MTR, it
implies that the mean potential outcome under treatment cannot be lower
than under nontreatment, E[Y(1)] ≥ E[Y (0)], such that the ATE is assumed
to be nonnegative: E[Y(1)] − E[Y (0)] = Δ ≥ 0. Therefore, the lower bound
of the ATE in equations (10.4) is to be adjusted such that it corresponds to
the maximum of E[Y(1)]LB − E[Y (0)]UB and zero, formally: ΔLB =
max(E[Y(1)]LB − E[Y (0)]UB, 0).

A further assumption considered by Manski and Pepper (2000) is
monotone treatment selection (MTS). It postulates that subjects select
themselves into treatment in a way that the mean potential outcomes of the
treated and nontreated groups can be ordered. For instance, positive MTS
implies that the mean potential outcomes of the treated weakly dominate
those of the nontreated: that is, E[Y(1)|D = 1] ≥ E[Y (1)|D = 0] and E[Y(0)|D
= 1] ≥ E[Y (0)|D = 0]. In the previous example with the training program,
this implies that individuals who are selected for training have weakly
higher mean wages (both with and without training participation) than those
not selected. This may appear reasonable if the training targets better
qualified and more experienced employees with a higher wage potential.
Under this assumption, the lower bound on the mean potential outcome
under nontreatment in equation (10.3) simplifies to E[Y(0)]LB = E[Y |D = 0]
because E[Y(0)|D = 1] (which was previously bounded by yLB) cannot be
less than E[Y|D = 0]. Likewise, the upper bound on the mean potential
outcome under treatment simplifies to E[Y(1)]UB = E[Y |D = 1] because
E[Y(1)|D = 0] (which was previously bounded by yUB) cannot be greater
than E[Y|D = 1].

As discussed in Robins (1989) and Balke and Pearl (1997), the ATE
bounds can also be tightened in the presence of an instrumental variable,
which we henceforth denote by Z in analogy to chapter 6. Let us to this end
assume that the instrument and the potential outcomes satisfy a mean
independence assumption, as considered by Manski (1990). For a binary
instrument Z, this implies that E[Y(1)|Z = 1] = E[Y (1)|Z = 0] and E[Y(0)|Z =
1] = E[Y (0)|Z = 0]. On average, the instrument must not directly affect the



outcome other than through the treatment, implying a mean exclusion
restriction, and not be correlated with unobserved characteristics affecting
the outcome. The mean independence assumption entails the following
bounds on the mean potential outcomes, which permits bounding the ATE:

The intuition of this result is that because Z on average does not affect
the potential outcomes, we may compute the bounds in equations (10.3)
conditional on Z and take the intersection of the obtained bounds across
various values of the instrument to tighten them. For this reason, we take
the minimum of the upper bounds and the maximum of the lower bounds of
the respective mean potential outcomes across Z = 1, 0. We also note that in
contrast to the discussion in section 6.1 in chapter 6, we did not impose any
assumptions on the association between the instrument and the treatment,
like the existence of a first-stage effect of Z on D or the monotonicity of D
in Z. This implies that the local average treatment effect (LATE) on
compliers is not point-identified as in section 6.1. But just like the ATE, the
LATE may be bounded under specific independence assumptions
concerning the instrument, as discussed in Richardson and Robins (2010).

A weaker restriction than mean independence is the assumption of a
monotone instrumental variable (MIV), as considered by Manski and
Pepper (2000). It implies that the instrument is monotonically (i.e., either
positively or negatively) associated with the mean potential outcomes.
Under a positive MIV assumption, it holds that E[Y(1)|Z = 1] ≥ E[Y (1)|Z =
0] and E[Y(0)|Z = 1] ≥ E[Y (0)|Z = 0]. This generally entails wider bounds
on the mean potential outcomes and the ATE than provided in equations



(10.5) under stronger mean independence. On the other hand, MIV may
appear more realistic in empirical applications. When considering work
experience as Z, for instance, it appears unlikely that average potential
wages do not depend on work experience, while it seems much more
reasonable that additional work experience increases (or at least never
decreases) wages. We may even impose several of the previously discussed
assumptions jointly (e.g., both MTR and MIV), which may entail tighter
bounds on the set of ATE values than either MTR or MIV alone.

A further type of assumptions in the context of instruments concerns the
ordering of the potential outcomes of various compliance types introduced
in figure 6.1. For instance, we might assume that the always takers (D(1) =
1, D(0) = 1) have on average weakly higher potential outcomes under
treatment than the compliers (D(1) = 1, D(0) = 0): that is, E[Y(1)|D(1) = 1,
D(0) = 1] ≥ E[Y (1)|D(1) = 1, D(0) = 0]. This appears somewhat related to
the previously discussed MTS assumption, with the difference that mean
potential outcomes are now assumed to be ordered according to compliance
types rather than treatment groups. Furthermore, we can impose the MTR
assumption within compliance types, such that the mean potential outcome
under treatment is assumed to weakly dominate that under nontreatment
among always takers: E[Y(1)|D(1) = 1, D(0) = 1] ≥ E[Y (0)|D(1) = 1, D(0) =
1]. Such dominance assumptions on the ordering of potential outcomes
permit bounding the treatment effects on various compliance types,
including the LATE on the compliers. This appears interesting if one is not
willing to impose all of the IV assumptions in expression (6.1) required for
the point identification of the LATE.

Flores and Flores-Lagunes (2013), for instance, bound the LATE when
maintaining the monotonicity of D in Z, implying Pr(D(1) ≥ D(0)) = 1, and
the random assignment of Z, but they assume a violation of the exclusion
restriction, such that Z may directly affect Y. Alternatively, and depending
on the application, we might invoke the random assignment of Z and the
exclusion restriction, but assume a violation of monotonicity, implying
Pr(D(1) ≥ D(0)) ≠ 1, as considered in Huber, Laffers, and Mellace (2017)
for assessing effects among various compliance types. Finally, outcome
dominance assumptions within and across types can also be used to tighten
the bounds on the ATE or the average treatment effect on the treated



(ATET) in the presence of a valid instrument; for instance, see Chen, Flores,
and Flores-Lagunes (2018).

Partial identification approaches have also been applied to address
outcome attrition and posttreatment sample selection, which imply that
outcomes are observed only for a selective subpopulation; for instance, see
Manski (1989). As already discussed in sections 4.11 and 6.4, sample
selection creates an endogeneity/confounding problem (even under a
random treatment) if both the treatment and unobserved characteristics that
also affect the outcome influence the observability of the outcome. We can
nevertheless derive bounds on the causal effects among specific subgroups,
which are defined by how sample selection is influenced by the treatment
state.

To formalize the discussion, in analogy to section 6.4, we denote by O a
binary selection indicator of whether outcome Y is observed. Applying the
potential outcome notation to the selection indicator, let O(1) and O(0)
denote the potential selection states under treatment and nontreatment,
respectively. Similar to the treatment compliance types defined in chapter 6
in terms of how the treatment reacts to some instrument, we define selection
compliance types in terms of selection as a function of the treatment.
Subjects satisfying (O(1) = 1, O(0) = 1) are always selected because their
outcome is observed independent of the treatment state. Accordingly, those
satisfying (O(1) = 0, O(0) = 0), (O(1) = 1, O(0) = 0), and (O(1) = 0, O(0) =
1) are never selected, selection compliers, and selection defiers,
respectively. As an example, let us consider the effect of a training program
on hourly wages, which are only observed among those in employment:
that is, O = 1, with O being a binary indicator for employment.

In this context, we might be interested in the ATE on the always selected
(i.e., those employed with and without training), which is the only group
whose outcomes are actually observed under both treatment and
nontreatment. Related to our previous discussion in the context of
instruments, we can impose specific dominance assumptions on the
ordering of potential outcomes across selection compliance types, as
considered by Zhang and Rubin (2003), to tighten the bounds on causal
effects. One such dominance assumption states that the average potential
wage of the always selected weakly dominates that of compliers under
either treatment state: that is, E[Y(1)|O(1) = 1, O(0) = 1] ≥ E[Y (1)|O(1) = 1,



O(0) = 0] and E[Y(0)|O(1) = 1, O(0) = 1] ≥ E[Y (0)|O(1) = 1, O(0) = 0]. This
might be rationalized by the fact that always selected have a higher labor
market attachment than compliers, as they are employed with or without
training. Another possible assumption is monotonicity of selection in the
treatment (i.e., Pr(O(1) ≥ O(0)) = 1), as considered in Lee (2009), which
rules out selection defiers.

When imposing both the dominance and monotonicity assumptions in
addition to a randomized treatment assignment, the upper and lower bounds
on the ATE among always selected, denoted by  and 

, correspond to the following expressions (see Zhang and
Rubin (2003)):

where outcome value y* is chosen such that the lowest outcomes in the
group with D = 1 and O = 1, whose proportion matches the share of
compliers in that group, are below this value. The intuition for this
approach is the following: In the extreme case that all complier outcomes
are concentrated at the bottom of the wage distribution under treatment
among those with D = 1 and O = 1, then dropping the lower part of the
wage distribution which corresponds to the complier share implies that only
the treated outcomes of the always selected remain. The share of compliers
conditional on D = 1 and O = 1 is identified by , as
discussed in Lee (2009), such that y* can be determined, too.

Chen and Flores (2015) extend partial identification under sample
selection based on monotonicity and dominance assumptions to the
instrumental variable (IV) context (e.g., noncompliance with random
treatment assignment) to bound the LATE on compliers. Bounding
strategies have also been applied for mediation analysis as considered in
section 4.10 in chapter 4, mostly assuming a randomly assigned treatment
and an endogenous mediator (such that unobservables jointly affect the
mediator and the outcome), see for instance Sjölander (2009). In all those
partial identification approaches, controlling for observed covariates X can
be useful in two dimensions. First, some assumptions (like dominance or



monotonicity) might appear more plausible after making subjects
comparable in observed characteristics. Second, conditioning on X may
further tighten the bounds. Semenova (2020), for instance, considers partial
identification under sample selection and uses machine learning to control
for the most important covariates (out of a potentially large number) jointly
affecting sample selection O and the outcome Y in a data-driven way, in the
spirit of the discussion in section 5.2 in chapter 5.

As a practical matter concerning the estimation of bounds and their
variances, which are required for constructing confidence intervals for the
estimated set of a causal effect, we need to pay attention to whether our
partial identification results contain any minimum and maximum operators.
Let us, for instance, consider the bounds on the mean potential outcomes in
equations (10.3), which do not include such operators. For this reason, we
can estimate them -consistently in the data with a distribution that is
asymptotically normal, just like in linear regression, as discussed in section
3.3 in chapter 3. This makes the computation of confidence intervals for the
estimated set straightforward. See, for instance, the discussion in Imbens
and Manski (2004), who suggest the following approach for computing 95
percent confidence intervals for the estimate of the partially identified ATE,
under the condition that the difference between the upper and lower bounds
of the ATE is nonnegligible:

where  are the estimated lower and upper bounds on the ATE and 
 and  denote their respective standard errors.
As a second example, let us now consider the bounds in equations

(10.5), which do contain minimum and maximum operators. It follows from
results in Hirano and Porter (2012) that bounds including such
nondifferentiable operators cannot be estimated without bias even when the
sample size grows large. Relatedly, conventional methods for computing
confidence intervals like that in expression (10.7) do generally not provide
correct coverage probabilities (e.g., of 95 percent). For this reason,
alternative methods of computing confidence intervals have been suggested
for such partial identification problems with minimum and maximum



operators, such as the half-median-unbiased confidence intervals of
Chernozhukov, Lee, and Rosen (2013).

A further approach is to apply a bootstrap procedure (see section 3.4) for
bias correction, as suggested by Kreider and Pepper (2007), which likely
mitigates (albeit not necessarily fully eliminates) estimation bias. The
procedure is based on repeatedly drawing bootstrap samples from the
original data and reestimating the bound of interest in each sample. We then
estimate the bias as the difference between the average of the bounds across
bootstrap samples and the respective bound estimated in the original data.
For instance, a bias approximation for estimating a lower bound ΔLB is
given by , with b indexing a specific bootstrap sample, B
denoting the number of bootstraps,  the estimated bound in a bootstrap
sample, and  the estimated bound in the original data. We also may use
such procedures of repeated sampling for directly constructing confidence
intervals, as suggested by Chernozhukov, Hong, and Tamer (2007) and
Romano and Shaikh (2008). More comprehensive surveys on partial
identification and its subfields are provided in Tamer (2010), Molinari
(2020), and Flores and Chen (2018).

To illustrate the estimation of worst-case bounds on the ATE of a
randomized treatment under sample selection (or outcome attrition) in R,
we load the experiment package by Imai, Jiang, and Li (2019). Furthermore,
we reconsider the JC data in the causalweight package previously analyzed
at the end of section 3.1, among others. We define random assignment to
Job Corps (JC) as treatment (D), treat=JC$assignment, and weekly
earnings in the fourth year after assignment as outcome (Y),
outcome=JC$earny4. In contrast to our application in section 3.1, however,
we are now not interested in the actual earnings outcome, which is
necessarily zero for those not working in the fourth year, but in the earnings
that would hypothetically be realized under employment. This information
is available only for working individuals and for this reason, we define a
selection indicator (O) for whether someone was employed for a nonzero
proportion of weeks in the fourth year after assignment,
selection=JC$pworky4 >0. Accordingly, we set the outcome to “missing,”
which is coded as NA in R, whenever the selection indicator is zero:
outcome[selection==0]=NA.



Next, we generate a data frame named dat, which includes the treatment,
selection indicator, and outcome. We then run the ATEbounds command for
worst-case bounds where the first argument consists of the regression
formula outcome ∼ factor(treat), in which the treatment must be coded as a
factor variable, and the second argument of the data source is data=dat. We
save the output in an object named results and call results$bounds and
results$bonf.ci to obtain the upper and lower ATE bounds, as well as the
confidence interval. The box here provides the R code for each of the steps.

Running the code yields lower and upper bounds on the ATE on weekly
earnings under employment of − 397.61 and 425.40 US dollars (USD),
respectively, with the 95 percent convidence interval ranging from − 419.62
to 453.54. Based on the worst-case bounds, the set of possible ATEs is very
large and ranges from substantially negative to substantially positive values,
such that we are far from rejecting the null hypothesis of a zero ATE at
conventional levels of statistical signficance.

In the next step, we aim at tightening the bounds by imposing
monotonicity of selection O in the treatment D, implying that for each
indiviudal, assignment to JC has either positive or zero (but not negative)
effect on employment in the fourth year. To this end, we use the leebounds
package by Semenova (2021), which is available on the GitHub platform.
Accessing GitHub requires first loading the devtools package and then
running install github(“vsemenova/leebounds”) to install the leebounds
package, before loading it using the library command. We apply the
leebounds command to the data frame dat (in which the variables have the
denominations treat, selection, and outcome, as required for the leebounds



command) and save the output in an object named results. Finally, we call
results$lower bound and results$upper bound to investigate the bounds.

We now obtain lower and upper ATE bounds of − 8.33 and 19.49 USD,
respectively, which are substantially tighter than the worst-case bounds. Yet
the set includes both positive and negative values, such that the null
hypothesis of a zero ATE cannot be rejected.

10.2 Sensitivity Analysis

The idea of sensitivity analysis follows in a sense an opposite direction
from the partial identification approach outlined in the previous section
10.1. While partial identification drops point identifying assumptions
altogether (or replaces them by weaker restrictions), sensitivity analysis
investigates the sensitivity of the causal effect to deviations from
assumptions that yield point identification. Let us, for instance, consider
treatment evaluation under the selection-on-observables assumption
postulated in expression (4.1) in chapter 4 based on controlling for
covariates X: that is, {Y(1), Y (0)}⊥D|X. If there is an unobserved
confounder U that jointly affects treatment D and outcome Y even
conditional on X, then this assumption is violated. In this case, we should
also control for U because the conditional independence of the potential
outcomes and the treatment holds, given both X and U:

Another way to think of this issue based on conditional treatment
probabilities (i.e., propensity scores) is to acknowledge that Pr(D = 1|X,
Y(1), Y (0)) ≠ Pr(D = 1|X). That is, the potential outcomes are associated
with the treatment when controlling for X alone (but not U), thus entailing
selection bias. By expression (10.8), however, Pr(D = 1|X, U, Y(1), Y (0)) =



Pr(D = 1|X, U), such that the potential outcomes are not associated with the
treatment when controlling for both X and U. The problem is that we cannot
control for U due to its nonobservability. For this reason, sensitivity
analysis makes assumptions about how strongly U might be associated with
D, Y, or both, in order to assess how robust an estimated causal effect is to
such violations of the selection-on-observables assumption.

Several sensitivity analyses that have been suggested are based on (1)
parametrically modeling the treatment propensity score Pr(D = 1|X, U) or
the outcome Y as a function of D, X, and U and (2) varying the values of U
over a presumably plausible range; see, for instance, Rosenbaum and Rubin
(1983a), Imbens (2003), and Altonji, Elder, and Taber (2008). As an
alternative, Ichino, Mealli, and Nannicini (2008) provide a nonparametric
method that imposes no parametric assumptions on the treatment or
outcome models, but instead restricts the distribution of U to be discrete
(e.g., binary, such that U only takes values 1 or 0). Let us subsequently
consider two approaches to sensitivity analysis that neither rely on
parametric treatment/outcome models nor restrict the distribution of
unobserved confounders. Furthermore, they require only a single parameter
to gauge the severity of violations of the selection-on-observables
assumption in expression (4.1), which appears attractive from a practical
perspective.

The first approach, suggested by Rosenbaum (1995), gauges violations
based on a sensitivity parameter Γ ≥ 1, which characterizes the assumed
worst-case degree of confounding. The latter is measured based on the odds
ratios of the observed propensity score Pr(D = d|X) (with d = 1 and d = 0 for
the conditional probabilities of treatment and nontreatment, respectively)
and of the unknown propensity score Pr(D = d|X, Y(d)), which may deviate
from Pr(D = d|X) due to confounding by unobservables U. Formally, Γ is
assumed to satisfy

for any feasible covariate and outcome values x and y. For Γ = 1, the
selection-on-observables assumption holds, implying that Pr(D = d|X = x) =
Pr(D = d|X = x, Y(d) = y) and the odds Pr(D = d|X = x)/(1 − Pr(D = d|X = x))



and Pr(D = d|X = x, Y(d) = y)/(1 − Pr(D = d|X = x, Y (d) = y)) are the same,
so their ratio is 1. By any Γ > 1, we allow a deviation from the selection-on-
observables assumption. When setting Γ = 3, the treatment odds when
controlling for X alone are assumed to be at most 3 times higher or 2/3
lower than the true treatment odds when controlling for both X and Y(d).

To see how we can use expression (10.9) to assess the sensitivity of
causal effects, let us first consider the mean potential outcome given X,
which may be written as a ratio of two integrals, as discussed by Kallus,
Mao, and Zhou (2019):

Equation (10.10) consists of the observed conditional density (or
probability in the case of a discrete outcome) of D and Y given covariates X,
denoted by f(D = d, Y = y|X = x), as well as the unobserved propensity score
Pr(D = d|X = x, Y(d) = y) of expression (10.9). Therefore, we can compute
upper and lower bounds on E[Y(d)|X = x], denoted by E[Y(d)|X = x]UB and
E[Y(d)|X = x]LB, based on the maximum and minimum values of equation
(10.10) when considering all values of Pr(D = d|X = x, Y(d) = y) that satisfy
the constraint in expression (10.9) concerning worst-case confounding as
implied by Γ.

This in turn permits computing upper an lower bounds on the conditional
average treatment effect (CATE) Δx = E[Y(1) − Y (0)|X = x], which we
denote by  and :

Averaging over these bounds also yields upper and lower bounds on the
ATE,  and . Kallus, Mao, and Zhou (2019) suggest
a kernel regression–based estimator for the CATE bounds in equations
(10.11). However, the constraint in expression (10.9) can also be used to
assess causal effect estimates coming from other estimation approaches,
such as pair matching, which we use in an empirical application in R
further below.



The second nonparametric approach to sensitivity analysis that we
consider was suggested in Masten and Poirier (2018). It can be applied to
both discrete outcomes (like the decision to buy a product) and continuous
outcomes (like birth weight), even though the subsequent discussion
focusses exclusively on the latter case. The method is based on
characterizing the maximum violation of the selection-on-observables
assumption that may occur in a population due to unobserved confounders
U by the maximum absolute difference in the propensity scores when
controlling for X alone versus both X and Y(d):

for d ∈{1, 0} and any values x, y occurring in the population. Sensitivity
parameter � is an upper bound on the absolute difference in probabilities,
and therefore necessarily between 0 and 1 (or 0 percent and 100 percent).
Setting � = 0 implies the satisfaction of the selection-on-observables
assumption, while larger values of � permit a larger degree of violation.

To see how we can use expression (10.12) for assessing the sensitivity of
causal effects, we introduce some further notation to define quantile
functions, similar to section 4.8. Let us denote by  the conditional
quantile of a potential outcome (the inverse of its cumulative distribution
function) assessed at a particular rank τ ∈ (0, 1), given covariates X = x.
Furthermore,  denotes the conditional quantile of the observed
outcome, given treatment D = d and covariates X = x. Masten and Poirier
(2018) demonstrate that upper and lower bounds on the conditional
quantiles of the potential outcomes, denoted by  and 

, are obtained by the following expressions:



This permits computing upper and lower bounds on the conditional
quantile treatment effect by taking the differences 

 and , respectively.
Furthermore, averaging these bounds across all ranks τ from 0 to 1 yields
upper and lower bounds on the CATE,  and , which in turn can be
averaged across values of the covariates to obtain bounds on the ATE, ΔUB

and ΔLB. To see the connection between sensitivity analyses and the partial
identification approaches of section 10.1 in chapter 10, we note that
sufficiently large values of � in expression (10.12) and Γ in expression
(10.9) entail the worst-case bounds in equations (10.3) and (10.4).

Sensitivity analyses have also been suggested for the context of causal
machine learning as discussed in chapter 5 (e.g., Chernozhukov et al.
(2021) and Dorn, Guo, and Kallus (2021)), as well as for other evaluation
strategies than the selection-on-observables framework, such as
instrumental variable approaches. Let us, for instance, consider a violation
of the monotonicity of treatment D in instrument Z, such that Pr(D(1) ≥
D(0)) = 1 in expression (6.1) of section 6.1 does not hold and defiers (as
characterized in figure 6.1) exist. We can assess the sensitivity of the LATE
by making assumptions about the share of defiers and how strongly the
potential outcomes differ between compliers and specific noncomplying
groups (namely, always and never takers or defiers); for instance, see Huber
(2014b) and Noack (2021). Also, in mediation analysis as discussed in
section 4.10, sensitivity analysis can be fruitfully applied, in particular to
assess the robustness of direct and indirect effects to the endogeneity of the
mediator, and possibly also the treatment, if the latter is not randomized.
Such approaches are among others suggested by Tchetgen Tchetgen and
Shpitser (2012), Vansteelandt and VanderWeele (2012), VanderWeele and
Chiba (2014), and Hong, Qin, and Yang (2018).

To implement a sensitivity analysis based on expression (10.9) in R, we
load the rbounds package by Keele (2014). We apply the procedure in the
context of direct pair matching without replacement to estimate the effect of
training participation on wages among the treated. To this end, we
reconsider the lalonde data in the Matching package. We use exactly the
same variable definitions as in the application at the end of section 4.2 for
treatment D (participation in the National Supported Work (NSW) training



program), outcome Y (real earnings in 1978), and covariates X. We then set
a seed for the reproducability of the steps to follow. We feed Y, D, and X
into the Match command (as previously considered in section 4.3), where
we also set the argument replace=FALSE to run pair matching without
replacement, and save the results in an object named output. Finally, we
wrap the latter by the hlsens command for a Rosenbaum-type sensitivity
analysis. We set the argument Gamma=2, which corresponds to the
maximum of the sensitivity parameter Γ in equation (10.9) that we would
like to consider, as well as GammaInc=0.25, which defines the increment
by which Γ should be increased in our analysis.

It is important to note that the hlsens command does not investigate the
sensitivity of the ATET (the causal effect that the Match command
estimates by default), but rather of the median of the outcome differences
between any treated and the respective matched nontreated observation.
This median (rather than mean) difference in matched outcomes has also
been considered by Hodges and Lehmann (1963) and motivates our
application of pair matching without replacement to have unique matched
pairs of treated and nontreated observations. The box here provides the R
code of each step.

Running the commands gives the following output:



As discussed before, we see that specifying Gamma=2 and
GammaInc=0.25 in the hlsens command computes the sensitivity of the
point estimate stepwise for values of Γ from 1 (implying no confounding
due to unobservables) to 2, with an increment of 0.25. The median outcome
difference under the assumption of no confounding (Γ = 1) corresponds to
1,478.2 USD. Therefore, the estimated median treatment effect on the
treated is somewhat lower than the ATET of 1746.057 obtained from the
Match package (as provided in output$est). For Gamma=1.25, the lower
and upper bounds are both above zero, thus pointing to a positive median
effect of training participation on participants under confounding due to
unobservables. When setting Γ to 1.5 or greater, however, the bounds
include a zero effect, so the results are not robust to higher levels of
confounding.



11
Treatment Evaluation under Interference
Effects

11.1 Failure of the Stable Unit Treatment Value Assumption

In all the previous chapters, we have ruled out any kind of interference or
spillover effects, such that the outcome of any subject in a population must
not be affected by the treatment state of any other subject. To this end, we
have so far assumed the satisfaction of the stable unit treatment value
assumption (SUTVA) provided in expression (2.1); see the discussion in
section 2.1 in chapter 2. However, the SUTVA may appear unrealistic in
many empirical problems, as discussed in Heckman, Lochner, and Taber
(1998).

Let us, for instance, consider a training program as treatment, such as an
information technology (IT) course. The share of individuals who receive
this training in a region may have an impact on someone’s employment
probability even beyond their individual training status, due to an increase
in the regional supply of a particular skill like IT competencies. Also, in
educational interventions like the provision of free textbooks to students,
spillover effects from treated to nontreated subjects may occur—namely,
through sharing the books or the knowledge therein with peers who did
themselves not receive the books. As a further example, the share of
individuals who are vaccinated or given a medicinal drug might also



influence the health status of subjects not obtaining the vaccine or drug by
affecting the likelihood of disease transmission; see, for instance, Halloran
and Struchiner (1991) and Miguel and Kremer (2004). In such cases that
involve interference, the overall treatment effect generally differs from the
average of the individual one.

In line with the discussion in section 2.1, let us express the potential
outcomes of a subject i as a function of the subject’s own potential
treatment state Di and the treatments assigned to all other subjects (but
subject i) in the population, denoted by �−i. If the SUTVA fails such that
interference occurs, the potential outcome under specific treatment
assignments Di = di and �−i = d−i is given by Yi(di, d−i) rather than Yi(di) as
under the satisfaction of the SUTVA. Denoting the potential outcomes by
Yi(di, d−i) bears some similarity with the causal framework of dynamic
treatments in section 4.9 in chapter 4, with the first treatment being the own
treatment of individual i, Di, and the second being the treatment of other
subjects, �−i. However, in the current context, the own and others’ treatment
need not be sequential, as in the dynamic treatment context, but may be
realized at the same time. Interference also seems somewhat related to the
concept of mediation analysis discussed section 4.10. In fact, we are
typically interested in disentangling the direct effect of the individual
treatment Di and the indirect effect of the treatment of other subjects �−i.
But in contrast to mediation analysis, we do not necessarily impose a
sequential association between Di and �−i.

The presence of interference generally complicates causal analysis, in
particular if quite arbitrary forms of interference effects are allowed; for
instance, see the discussion in Manski (2013). For this reason, evaluations
aiming at separating interference from individual-specific (or direct)
treatment effects typically rely on assumptions about how interference
affects the outcomes of interest. One possible approach consists of
imposing a partial interference assumption, which requires that interference
effects are limited to occur only within but not across specific (and
nonoverlapping) clusters, like geographic regions. In other words, the
SUTVA may be violated on an individual level, but it must be satisfied on a
cluster level such that the treatment assignments in one region must not
affect the outcomes in another. Within clusters, however, the network



between individuals through which interference effects materialize need not
even be known, so interference can be quite general.

A second approach does not rely on the partial interference assumption,
which is violated under interference across clusters, such as if training
programs in one region affect labor market outcomes in other regions due to
cross-regional competition for jobs. It instead uses exposure mappings,
which impose assumptions on the mechanisms through which interference
affects outcomes based on information about the network of peers with
which some individual interacts. One might assume, for instance, that
interference effects can stem only from the treatment of an individual’s
family members, while the treatment status of any other subject in the
population is irrelevant. An alternative exposure mapping would imply that
both family members and friends are relevant for interference effects. The
subsequent two sections of this chapter will discuss causal analysis based
on partial interference and exposure mappings, respectively. For the sake of
simplicity, we will focus on a binary treatment throughout.

11.2 Partial Interference

Under partial interference as considered by Sobel (2006), Hong and
Raudenbush (2006), and Hudgens and Halloran (2008), the SUTVA holds
across clusters such that the potential outcomes of subjects depend only on
the treatments of other subjects in the same cluster, but not in other clusters.
Using subscript c to denote a specific cluster, this implies that the potential
outcome of subject i in cluster c can be indexed by Yc, i(dc, i, dc, −i). Let us
now assume that we can randomize both the treatment intensity on the
cluster level (i.e., the share of individuals getting a treatment in a specific
cluster) and the treatment on the individual level (i.e., the decision who
actually obtains the treatment within some cluster with a particular
treatment share). Such a double randomization of the treatment on the
cluster and the individual level permits identifying the direct, interference,
and total (comprising both direct and interference) effects of a treatment.

To formalize the discussion, let us denote by Pc = E[D|cluster = c] the
treated proportion within cluster c. Under successful randomization of the
proportion across clusters, the following independence assumption holds:



Expression (11.1) states that the treated proportion in any cluster is not
associated with the potential outcomes of the individuals in the respective
cluster. Furthermore, under randomization of treated units within a cluster,
the potential outcomes of any individual in the respective cluster and the
individual treatment assignments are independent:

Random assignment also implies that in large enough samples,
observations receiving the treatment based on the cluster-varying
proportions are in terms of background characteristics representative of the
total population. For this reason, we subsequently consider causal effects
under interference as a function of the treatment proportion Pc = E[D|cluster
= c] instead of any possible treatment assignment distribution �c, −i. From a
practical perspective, the latter, more general interference criterion would
be much harder to analyze due to the high dimensionality of �c, −i in terms of
possible treatment assignments among other units in the cluster.

We first consider the average direct effect of the individual treatment
assignment Di for a given treatment share Pc = p, which we denote by θ(p):

This effect corresponds to the difference in mean potential outcomes when
varying the individual treatment assignment, but keeping the treatment
share (and thus the interference effect) fixed. We note that θ(0) = E[Yc, i(1,
0) − Yc, i(0, 0)] corresponds to the direct effect in the absence of any
interference, which is the case if the SUTVA holds on the individual level,
as in section 2.1. The average interference (or indirect) effect, denoted by
δ(d, p, p′), is the impact of shifting the treatment proportion in a cluster
from a value p (e.g., 80 percent) to p′ (e.g., 20 percent), while keeping the
individual treatment assignment fixed at Dc, i = d:



Finally, and similar to the discussion of causal mechanisms in section
4.10, the total average treatment effect, denoted by Δ(p, p′), corresponds to
the sum of the direct and the interference effects:

Δ(p, p′) is the total treatment effect among individuals switching the
treatment status from 0 to 1 when increasing the treatment proportion from
p′ to p, and we bear in mind that these individuals are representative of the
total population due to double randomization. Subtracting and adding Yc, i(0,
p) after the second and Yc, i(1, p′) after the third equality, respectively,
permits disentangling Δ(p, p′) into specific combinations of direct and
interference effects.

The total treatment effect Δ(p, p′) is to be distinguished from yet another
causal parameter, which Hudgens and Halloran (2008) refer to as an overall
treatment effect—namely, the average aggregate effect of assigning
treatment proportions p versus p′ to a population, denoted as . To
define this parameter, let Dc, i(p) denote the potential treatment under
treatment proportion p, similar in spirit to the potential treatment states
defined as a function of an instrumental variable (IV), as discussed in
chapter 6. The overall treatment effect is then given by

By relying on potential individual treatment states,  (in contrast to
Δ(p, p′)) acknowledges that some individual treatments might not be
changed when shifting the treatment proportion from p′ to p. That is, there
may be always takers or never takers of the treatment (in the notation of
chapter 6). The direct treatment effect of these groups is not part of the
aggregate effect  because their treatment remains unchanged, as the
treatment share generally does not shift from 0 to 1 (or 100 percent).



Under double randomization, the direct, interference, total, and overall
treatment effects are identified based on the following conditional mean
differences:

Similar to the discussion on mediation analysis in section 4.10, there may
be interaction effects between the direct and the interference effects. For
instance, δ(1, p, p′) and δ(0, p, p′) might generally differ, such that the
importance of interference might differ across treatment states. In the
context of the educational treatment discussed previously, for instance, the
spillover effects coming from peer students’ textbooks could be large
among those not possessing books themselves (Dc, i = 0), but zero among
those possessing books themselves (Dc, i = 1). Likewise, the direct effect
θ(p) can depend on the proportion of treated p. For instance, participation in
an IT training could have a larger effect on an individual’s earnings if only
comparably few other subjects also receive this training, such that the
supply of IT skills is relatively restricted in a given region.

Concerning statistical inference, Hudgens and Halloran (2008) suggest
variance estimators for the estimates of the causal effects in equations
(11.7). They rely on the condition that interference effects depend only on
the treatment proportion rather than who exactly receives the treatment in a
cluster, which is known as the stratified interference assumption. In
contrast, Tchetgen and VanderWeele (2012) and Liu and Hudgens (2014)
provide alternative methods for assessing statistical significance and
computing confidence intervals that do not rely on this assumption.

To gain some intuition about the identifiability of the different causal
effects, let us consider the impact of a training program for job seekers on
employment, which is presumably attended by 50 percent of job seekers in
some regions, but by none (0 percent) in others. This scenario, which is
inspired by Crépon et al. (2013), permits identifying the interference effect
of a treatment proportion of 0.5 (50 percent are treated) versus 0 (no one is
treated) on employment under individual nontreatment (Dc, i = 0):



Furthermore, the direct effect of the training on employment under a
treatment proportion of 0.5 is identified by

Here, θ(0.5) and δ(0, 0.5, 0) add up to the total effect of being trained and
exposed to an increase in the treatment proportion from 0 to 0.5, given by

In contrast to the previously discussed causal effects, however, our
scenario does not permit assessing the interference effect under individual
treatment, δ(1, 0.5, 0), because the lower treatment proportion of zero
implies that there are no treated individuals under Pc = 0. For the same
reason, the direct effect θ(0) (i.e., the individual treatment effect in the
absence of any interference) is not identified either. Finally, the overall
treatment effect in the population, which in this case corresponds to the
aggregate employment effect of increasing the treatment proportion from 0
percent to 50 percent, is given by

As discussed in chapter 6, and depending on the empirical problem, not
all subjects comply with their random treatment assignment. Therefore,
actual treatment participation may be selective: that is, associated with
unobserved background characteristics that also affect the outcome. In this
case, we may apply an IV approach under specific conditions related to
those discussed in section 6.1 in chapter 6. Random individual treatment
assignment serves as an instrument for treatment participation Dc, i under
specific IV assumptions, particularly interference-adjusted versions of the
IV exclusion restriction and monotonicity of treatment in the assignment, as
discussed in Kang and Imbens (2016) and Imai, Jiang, and Malani (2021).
In the spirit of expressions (11.7), we can then compute the direct, indirect,
or total effects of the random assignment on treatment Dc, i (i.e., the first-
stage effects) and outcome Yc, i (i.e., the intention-to-treat (ITT) effects).
Very much in the spirit of the discussion in section 6.1, dividing (or scaling)



the respective ITT by the respective first-stage effect permits assessing the
causal parameter of interest among the treatment compliers.

A further alternative to double randomization consists of imposing a
selection-on-observables assumption, meaning that expressions (11.1) and
(11.2) hold conditional only on cluster-specific covariates, denoted by Xc,
which may contain both individual- and cluster-level characteristics. Let us
reduce the complexity of interference associated with treatment assignment
�c, −i by assuming that only the treatment proportion drives the interference
effects independent of which individuals are treated, as considered in
Ferracci, Jolivet, and van den Berg (2014). This permits defining
interference effects as a function of Pc, just as in equation (11.4). The
selection-on-observables assumption implies that we can identify the
conditional direct, interference, total, and overall treatment effects given Xc

when adding Xc as control variables on the right side of equations (11.7); for
instance, see the discussion in VanderWeele (2010).

The average direct effect conditional on Xc, for instance, is given by

It follows that averaging over the covariate values of Xc in the population
identifies the average direct effect: θ(p) = E[θXc(p)]. Similar to the
discussion in chapter 4, we may apply regression, matching, IPW as
considered by Tchetgen Tchetgen and VanderWeele (2012), or doubly
robust (DR) approaches as suggested in Liu et al. (2019) for estimating the
causal effects of interest.

An alternative evaluation design consists of randomly assigning
treatment availability across clusters while determining individual treatment
assignment based on an explicit, nonrandom eligibility criterion. This
approach satisfies the notion of partial population experiments, as discussed
in Moffitt (2001). As an example, let us consider a welfare program
providing cash transfers for poor households as a treatment, and it is
randomly assigned across geographic clusters like regions or municipalities.
In treated regions where the program is available, only poor households
below a specific and explicitly known poverty level are eligible for the
transfers, while richer household do not have access to the treatment. In



nontreated regions, the cash transfers are not available for any household,
even those satisfying the poverty criterion.

As discussed in Angelucci and De Giorgi (2009), such a design permits
evaluating the interference effect on ineligible subjects by comparing the
outcomes of ineligibles across treated and nontreated regions. Even though
they are not targeted by the cash transfers, the wealth outcomes of ineligible
households in treated regions could be positively affected by the increase in
consumption and spending of eligible households receiving cash transfers.
Furthermore, the evaluation design also allows us to assess the total effect
on eligibles by comparing the outcomes of eligibles across treated and
nontreated regions. This total effect may contain the direct wealth effect of
the cash transfer, as well as interference effects due to increased
consumption of other eligibles. Obviously, such an evaluation approach
requires the eligibility criterion to be strictly followed, such that the
treatment is deterministic in the eligibility criterion, and to be observed,
such that eligibles and ineligibles can be unambiguously identified in the
data.

For a more formal discussion, let Pc now denote a binary variable
indicating whether the treatment is available in a region (Pc = 1) or not (Pc =
0). Successful randomization of Pc across clusters implies that expression
(11.1) is satisfied. Furthermore, we assume that individual treatment
eligibility is known (e.g., as a function of an observed poverty index) and
represent it as a binary indicator denoted by ℰ, which takes the value of 1
for eligibles and 0 for ineligibles. Furthermore, let us define the interference
and total treatment effect conditional on the eligibility status as

respectively, where e and the treatment state d are either 1 or 0.
Under the evaluation design considered, we can assess the interference

effect among ineligibles under nontreatment, δℰ=0(0), based on the following
mean difference:



Furthermore, the total effect among eligibles, denoted by Δℰ=1, corresponds
to

Rather than assuming a randomly assigned treatment on the individual or
cluster level, we may also consider alternative methods for assessing
interference effects, like the difference-in-differences (DiD) approaches
discussed in chapter 7. This requires that outcomes are observed in both
pretreatment and posttreatment periods. To apply the DiD approach, we
maintain the assumption that eligible and ineligible subjects are identifiable
in the data, but we replace the independence assumption in expression
(11.1) by a specific common trend assumption. The latter requires that
conditional on the eligibility status, the mean potential outcome in the
absence of any treatment at the cluster or individual level would change by
the same magnitude from the pretreatment to the posttreatment period
across treated and nontreated clusters.

To formalize this common trend assumption, we reintroduce the time
index T from chapter 7, which is equal to 0 in the pretreatment period, when
the treatment was not available in any cluster, and 1 in the posttreatment
period, when the treatment was available in treated clusters. To distinguish
the outcomes and potential outcomes in terms of pretreatment and
posttreatment periods, we add the subscript t ∈{0, 1} to the parameters
such that they become Yc, i, t and Yc, i, t(d, Pc). This permits stating the
common trend assumption as follows (for e ∈{0, 1}):

Under the satisfaction of the common trend assumption in equation
(11.16) and the identifiability of eligibility types, the total effect on eligibles
in treated clusters, denoted by Δℰ=1, Pc=1 = E[Yc, i(1, 1) −Yc, i(0, 0)|ℰc, i = 1, Pc =
1], is identified. The same applies to the interference effect under
nontreatment among ineligibles in treated clusters, δℰ=0, Pc=1(0) = E[Yc, i(0, 1)
−Yc, i(0, 0)|ℰc, i = 0, Pc = 1]. The causal parameters correspond to the
following DiD expressions:



Huber and Steinmayr (2021) apply this DiD approach to assess the effect of
extended eligibility for unemployment benefits, as introduced in selected
(rather than randomly chosen) regions of Austria for job seekers satisfying
certain eligibility criteria in terms of age and employment history. The
results suggest that the extension has an interference effect by decreasing
the job-search duration of ineligible individuals in treated regions, due to
reduced job competition from eligible job seekers.

Another evaluation strategy consists of applying a regression
discontinuity design (RDD), as discussed in section 9.1 of chapter 9, on the
cluster level, as considered in Angelucci and Maro (2016). This requires a
cluster-related running variable with a threshold value, according to which
the availability of a treatment in a cluster Pc is assigned. As an example, let
us consider a regional development fund for financing local businesses,
which is provided depending on whether the regional gross domestic
product (GDP) per capita is larger than a specific threshold. Regions with a
GDP per capita just above and just below the threshold might arguably be
comparable in terms of their background characteristics, such that a
continuity assumption with regard to the potential outcomes, as discussed in
section 9.1, holds for the assignment of Pc around the threshold. In this
case, we may evaluate the causal effects among eligibles and ineligibles
based on a comparison of regions just above or below the threshold: that is,
by considering equations (11.14) and (11.15) in a window around the
threshold of GDP per capita. Further potential strategies include IV
methods (as discussed in chapter 6), which require a valid cluster-level
instrument for the assignment of Pc, or a selection-on-observables approach
by assuming that expression (11.1) holds, conditional on covariates Xc; see
Angelucci and Maro (2016). In the latter case, equations (11.15) and (11.14)
given Xc yield the respective causal parameters conditional on the
covariates, because Pc is conditionally independent of the potential
outcomes.



Alternatively, Forastiere, Mealli, and VanderWeele (2016) assume that
only a subset of potential outcomes (e.g., those under individual treatment)
are independent of the eligibility status conditional on covariates and some
causal effects are homogeneous across ineligible or eligible groups. In
contrast to the previous methods, their approach does not rely on the
identifiability of the eligibility status. We can also apply this method in
scenarios where a subpopulation that is not directly observed reacts to an
increase in regional treatment availability (i.e., a switch from Pc = 0 to Pc =
1) by changing the individual treatment status from zero to 1, while the
treatment status of other groups remains unaffected. This is very much
related to the definition of compliers, always takers, and never takers in the
discussion on IVs in chapter 6. However, in the current context, Pc is not a
valid instrument for individual treatment take-up because it may also affect
the outcomes via interference effects. For this reason, the identification of
interference effects on specific compliance or eligibility types requires
additional assumptions like effect homogeneity conditions.

Let us consider an empirical example for the evaluation of direct and
interference effects in R under double randomization of the treatment on the
regional and individual levels. To this end, we use the interference package
by Zonszein, Samii, and Aronow (2021), which is available on the GitHub
platform. This requires first loading the devtools package and then running
install github(“szonszein/interference”) to install the interference package
before loading it using the library command. We analyze data from a
randomized experiment evaluating India’s National Health Insurance
Scheme by Imai, Jiang, and Malani (2021), which is available in a file
named india.csv on Kosuke Imai’s online data repository at the Harvard
Dataverse (https://doi.org/10.7910/DVN/N7D9LS, as of December 2021).
We download india.csv and save it on a hard disk, which in our case has the
denomination C: (but this might be different for other computers). As the
data set is coded in a format called comma-separated values (csv), we apply
the read.csv command to the location (or path) of the file on the hard disk,
read.csv(“C:/india.csv”), to load it into R and save it in an object named
data. We then run the na.omit command to drop observations with missing
values, which reduces the number of observations from 11,089 to 10,030.

https://doi.org/10.7910/DVN/N7D9LS


Next, we define a cluster variable named group to correspond to the
village identifier data$village id in our data set, as we consider villages as
clusters. Furthermore, we generate a variable for the treatment intensity on
the village level Pc, denominated by group tr. The latter corresponds to
data$mech, which is equal to 1 for randomly chosen villages in which 80
percent of individuals were given access to health insurance and zero for
villages with a treatment proportion of just 40 percent. Furthermore, indiv
tr=data$treat is the individual treatment, randomly assigned access to the
health insurance program, while obs outcome=data$EXPhosp 1 is the
outcome—namely, a household’s annual hospital expenditure in Indian
rupees. Finally, we combine the previously defined variables in a data frame
named dat, which we wrap using the estimates hierarchical command in
order to estimate the direct and interference effects of the health insurance
program. The box here provides the R code for each of the steps.

Running the code provides the following results:

Here, direct psi hat corresponds to the estimate of θ(p): that is, the
average direct effect for the higher treatment proportion p = 0.8 (or 80



percent); direct phi hat is the estimate of θ(p′), the direct effect under the
lower treatment proportion p′ = 0.4 (or 40 percent); indirect hat provides
the estimated δ(0, p, p′), the interference effect under no individual
treatment; and total hat and overall hat are the estimates of the total effect,
Δ(p, p′), and the overall effect, , respectively. The output also
provides the estimated variances of the effects under the previously
mentioned stratified interference assumption of Hudgens and Halloran
(2008) (imposing that interference effects are fully determined by the
treatment proportion); for instance, var direct psi hat. For this reason,
taking the square root of any variance yields the respective standard error.

Among our effect estimates, only that of θ(p′) is statistically significantly
different from zero at the 5 percent level, as its t-statistic 

 exceeds the critical value of 1.96. Imai, Jiang,
and Malani (2021) argue that the fact that the estimated direct effect is
positive under the lower treatment proportion p′, but statistically
insignificant (and even negative, namely − 137.9754) under the higher
treatment proportion p, might point to a congestion effect: the more
individuals in a village are assigned to the health insurance program, the
smaller is the direct effect on health spending, possibly due to increased
competition for a limited amount of health services available at hospitals.
However, we keep in mind that in our empirical application, we assess the
ITT effects of access to the health insurance program, which in the case of
noncompliance differs from actual treatment take-up: that is, enrollment in
the insurance program. We note that the experiment package contains a
command called CADErand, which permits estimating the direct and
interference effects of actual treatment participation among treatment
compliers based on an IV approach suggested by Imai, Jiang, and Malani
(2021).

11.3 Interference Based on Exposure Mappings

In contrast to the partial interference assumption invoked in the previous
section, exposure mappings do not confine interference to take place only
within clusters, but instead impose restrictions on the relevant interference
network. This requires information about the contacts that a specific subject
interacts with to determine the strength of interference, while the partial



interference approach of the previous section is agnostic about networks
within clusters. Let us, for instance, consider the effects of an information
or marketing campaign on opinions about a product or political issue, and
assume that we can observe the parts of a subject’s network that are relevant
for the interference effects, such as family, friends, and other social
contacts. Such knowledge about the social network appears important, as
the campaign may not only directly affect someone’s opinion, but also the
opinions of her or his contacts in the network, which in turn may also exert
an interference effect on a subject’s own opinion through social
interactions.

Coppock, Guess, and Ternovski (2016), for instance, investigate the
impact of a mobilization social media campaign on signing an online
environmental petition and find evidence for interference effects through
the treatment of contacts in the virtual social network. Such interference
networks, however, can be quite different in terms of size and structure for
various subjects in a population of interest. Therefore, it is generally
cumbersome, if not impossible, to assess the interaction effects for all
possible forms of networks that might exist. For this reason, exposure
mappings restrict the complexity of how interference effects materialize
through a social network. One assumption reducing complexity, for
instance, is that the interference effect depends only on the number of
contacts who receive the treatment, but not their type (e.g., family or
friends). An even more restrictive assumption is that all that matters for
interference is whether at least one contact is treated, while the exact
number of treated contacts is irrelevant.

Exposure mappings ultimately permit defining multiple (but not an
excessive number of) kinds of interference. This allows us to assess a
treatment’s direct and interference effects if we appropriately control for
differences in the probabilities of specific exposure mappings across
subjects, particularly due to different network structures. Network features
like the number of contacts generally affect both the exposure mappings
and the outcome and are thus confounders, even if the treatment is
randomized on the individual level. For instance, subjects with larger
networks are more likely to have at least one treated contact (which might
be the exposure mapping of interest) and may also systematically differ in
terms of their outcomes (like opinions) from subjects with smaller



networks. For this reason, adjusting for the joint probability of (1) a
subject’s own treatment state and (2) the exposure mapping related to the
treatment assignment in a subject’s network is key to a sound causal
analysis with network interference.

To discuss the idea of exposure mappings more formally, let us denote
by �i the exposure mapping for subject i. �i defines interference effects as a
function of i’s interference network, denoted by �i and the treatment
assignment among the remaining subjects in the population, denoted by �−i.
That is, the mapping is defined as

with ℱ being a known function. Reconsidering the previous examples for
exposure mappings, for instance, ℱ could correspond to the number of
subjects who are at the same time treated according to the assignment
variable �−i and part of individual i’s network according to �i. Alternatively,
ℱ could be a binary indicator for whether at least one subject who is treated
according to �−i is also part of individual i’s network according to �i.
Depending on the assumed complexity of interference, �i may take more or
fewer different values g, somewhat related to the multiple treatment
framework of section 3.5 in chapter 3. In the simplest case, the exposure
mapping is binary, with g = 1 if any social contact is treated and g = 0 if no
social contact is treated.

Under a correctly assumed exposure mapping in equation (11.18), the
potential outcome Yi(di, d−i) simplifies to Yi(d, g). This permits defining
average direct, interference, and total effects, denoted by θ(g), δ(d, g, g′),
and Δ(g, g′), respectively, as functions of a subject’s own treatment and the
exposure mapping:

where g and g′ are two distinct mappings (e.g., 1 and 0).
Let us assume that the treatment is randomly assigned among individuals

in the population after the social networks have been formed. This is



implied by the following independence assumption between the potential
outcomes and the treatment assignment of subject i and all remaining
subjects in the population:

Despite random treatment assignment, however, exposure mappings are not
random. Subjects with a larger social network �i, for instance, are more
likely to have at least one treated contact than subjects with smaller
networks. This selection issue can be tackled by controlling for the joint
probability (or propensity score) of the own potential treatment state Di and
exposure mapping �i as a function of network structure �i, which we
henceforth denote by pi(d, g) = Pr(Di = d, �i = g|�i).

Under specific research designs and exposure mappings, we can
compute this propensity score via dynamic programming (see Ugander,
Karrer, Backstrom, and Kleinberg (2013)) or estimate it in the data by
randomization inference, as discussed in section 8.1 in chapter 8. The latter
approach is based on randomly reassigning placebo treatments Di, �−i many
times in the data with the same share of treated subjects as observed in the
original data, and then computing the share of exposure g for a specific
network structure �i across the generated treatment assignments. For
instance, we might reassign the treatment in the data 1,000 times with a
treatment probability of 50 percent and verify the frequency of having a
placebo treatment of both individual i (such that d = 1) and at least one
subject in the network of individual i (such that g = 1). This permits
computing the probability pi(1, 1) = Pr(Di = 1, �i = 1|�i).

Similar to the IPW approach outlined in the selection-on-observables
framework of section 4.5, reweighting by the inverse of the propensity
score permits identifying the effects in equations (11.19). The following
IPW expressions yield the direct and interference effects of interest:



Aronow and Samii (2017) provide a detailed discussion on identification,
effect estimation, and a conservative method of estimating the variance of
the effect estimates in this context.

Causal analysis based on exposure mappings can also be applied in a
selection-on-observables framework. The latter implies that the assignment
of the individual treatment Di and exposure mapping �i is as good as
randomly assigned when controlling for observed covariates X in addition
to network structure �i. These covariates may contain both individual- and
network-specific characteristics and are to be included as control variables
when computing the propensity score pi(d, g). Alternatively to IPW, we
could apply matching- or regression-based approaches adjusting for the
propensity scores when assessing direct and interference effects; for
instance, see Forastiere, Airoldi, and Mealli (2021). Furthermore, van der
Laan (2014) provides a doubly robust (DR) estimation approach in this
context based on targeted maximum likelihood estimation (TMLE), as
discussed in section 4.6. Qu, Xiong, Liu, and Imbens (2021) suggest a DR
estimation approach that combines the frameworks of exposure mappings
and partial interference. A more detailed survey on causal analysis under
interference is given by Aronow, Eckles, Samii, and Zonszein (2020), who
also provide an empirical example in R for IPW-based estimation (see
equations (11.21)), using the interference package.
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Conclusion

We have come a long way by discovering a diverse toolkit of methods for
causal analysis, which can easily be implemented in the statistical software
R. We started with an introduction to causality and the experimental
evaluation of a randomized treatment. We then moved to identification and
flexible estimation under selection on observables, instrumental variables
(IVs), difference-in-differences (DiD), Changes-in-Changes (CiC),
synthetic controls, regression discontinuities and kinks, and bunching
designs. We devoted particular attention to approaches that combine causal
analysis with machine learning to provide data-driven procedures for
tackling confounding related to observed covariates, investigating effect
heterogeneities across subgroups, and learning optimal treatment policies.
In a world with ever-increasing data availability, such causal machine
learning (CML) methods aimed at optimally exploiting large amounts of
information will likely be on the rise in the years to come. Finally, we also
discussed the evaluation of causal effects with partial identification and
interference effects.

However, our journey does not necessarily stop here, because the fields
of impact evaluation and CML are ever evolving. Methodological
innovations and refinements are happening at a breathtaking pace, also
fueled by the increased data availability in the age of digitization. One
promising area that has been gaining momentum is causal discovery. In
contrast to assessing the causal effect of a predefined treatment variable



(like a marketing intervention or training sessions) as is the focus in this
book, causal discovery aims at learning the causal relations between two,
several, or even many variables in a data-driven way.

Learning which variables affect which other variables from statistical
associations alone rather than from a presupposed causal structure, in which
a treatment affects the outcome but not vice versa, is a challenging task.
However, a growing number of studies demonstrates under which
assumptions and circumstances this is at least theoretically feasible; for
instance, see Kalisch and Bühlmann (2014); Peters, Janzing, and Schölkopf
(2017); Glymour, Zhang, and Spirtes (2019); and Breunig and Burauel
(2021). Should causal discovery succeed in correctly revealing causal
associations on a larger scale in practically relevant cases, then it would
arguably be the first artificial intelligence method that comes closer to
actually doing something intelligent: finding complex causal associations,
which are a fundamental part of human reasoning. Therefore, the best of
causal analysis might be yet to come, so let’s stay tuned for exciting
developments in the future.
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